SerDes Toolbox™
User's Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SerDes Toolbox™ User's Guide
© COPYRIGHT 2019-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Design and Simulate SerDes System Topics

1]

Fundamentals of SerDes Systems 1-2
Clock and Data Recovery in SerDes System 1-3
Phase Detector 1-3
Recovering Clock Signal i 1-6
Analog Channel Loss in SerDes System 1-14
Loss Model from Channel Loss Metric 1-14
Loss Model from Impulse Response 1-14
Introducing Cross Talk 1-14
Manage IBIS-AMI Parameters 1-16
Contents of IBISFile 1-16
Contents of AMIFile 1-16
Debugging AMI Filesin EDA i, 1-17
Statistical Analysis in SerDes Systems 1-18
Init Subsystem Workflow 1-19
SerDes System Using Init Subsystem 1-20

Customize SerDes Systems Topics

2|

Customize SerDes System in MATLAB 2-2

Create and Customize IBIS-AMI Models Topics

3|
SiSoft Link 3-2

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI
Software 3-3

iii

iv

Contents

Design and Simulate SerDes Systems Examples

4

Find Zeros, Poles, and Gains for CTLE from Transfer Function 4-2

Convert Scattering Parameter to Impulse Response for SerDes System

Globally Adapt Receiver Components Using Pulse Response Metrics to
Improve SerDes Performance 4-11

Customize SerDes Systems

S|

Customizing SerDes Toolbox Datapath Control Signals 5-2
Customizing Datapath Building Blocks 5-11
Implement Custom CTLE in SerDes Toolbox PassThrough Block 5-20

Customize IBIS-AMI Models

6|

Managing AMI Parametersii it 6-2

7

PCle4 Transmitter/Receiver IBIS-AMI Model 7-2
DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model 7-15
DDRS5 Controller Transmitter/Receiver IBIS-AMI Model 7-26
CEI-56G-LR Transmitter/Receiver IBIS-AMI Model 7-38
USB3.1 Transmitter/Receiver IBIS-AMI Model 7-47

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Design and Simulate SerDes System
Topics

* “Fundamentals of SerDes Systems” on page 1-2
* “Clock and Data Recovery in SerDes System” on page 1-3
* “Analog Channel Loss in SerDes System” on page 1-14
* “Manage IBIS-AMI Parameters” on page 1-16
“Statistical Analysis in SerDes Systems” on page 1-18

1 Design and Simulate SerDes System Topics

Fundamentals of SerDes Systems

1-2

Modern high-speed electronic systems are characterized by increased data speed integrated circuits
(ICs). The input/output performance remains the bottleneck that limits the overall performance of a
high-speed system. Serial data transfer is the most efficient way of communicating large data quickly
between computer chips on printed circuit boards through copper cables and through short, medium,
and long length fiber optics.

Thus, many systems now aggregate and serialize multiple input/ output (I/O) signals for transmission
across fiber and copper cables and PCBs at a higher data rate, recovering and de-serializing the
individual signals on the receiving end. These SerDes (Serializer/De-Serializer) implementations
employ additional silicon real estate to perform sophisticated equalization required for reliable signal
transmission at very high data speeds. This approach helps maximize throughput at the system level.

SerDes design is a complex, iterative process that typically starts with a baseline SerDes system that
demonstrates the feasibility of a design approach. This system also establishes budgets for the
different parts of the serial channel and associated transmitter (TX) and receiver (RX) equalization
circuitry. The data that describes the desired behavior of each of the equalization filters in both the
transmitter and the receiver is then back-annotated in the behavioral models with the correlation
with simulations or measurements. The final step is to implement the training algorithms and control
loops that will be executed by the chip during startup and from time to time when the channel needs
to be retrained.

The SerDes system is then compiled into IBIS-AMI (Input/Output Buffer Information Specifications —
Algorithmic Model Interface) models.

There are six sections of a SerDes system:

* TX equalization — This becomes the IBIS-AMI dll for the transmitter.

* TX AnalogOut — This becomes the analog model of the transmitter. It is part of the IBIS model for
TX, and is typically represented by the I-V and V-T characteristics curves in the .ibs file.

* Channel — This becomes the model of the physical channel, including the TX and RX package
models.

* RX AnalogOut — This becomes the analog model of the receiver. It is part of the IBIS model for
RX, and is typically represented by the I-V and V-T characteristics curves in the . ibs file.

* RX equalization — This becomes the IBIS-AMI dll for the receiver.

* Training algorithms and control loops — These become the on-chip microcode that is executed
inside of the chip during startup and when the channel needs to be retrained.

See Also

More About
. “Design SerDes System and Export IBIS-AMI Model”

Clock and Data Recovery in SerDes System

Clock and Data Recovery in SerDes System

In this section...

“Phase Detector” on page 1-3

“Recovering Clock Signal” on page 1-6

High-speed analog SerDes systems use clock and data recovery (CDR) circuitry to extract the proper
time to correctly sample the incoming waveform. The CDR circuitry creates a clock signal that is
aligned to the phase and to some extent the frequency of the transmitted signal. Phase tracking (first
order CDR) is usually accomplished by using a nonlinear bang-bang or Alexander phase detector that
drives a voltage-controlled oscillator (VCO). Frequency tracking (second order CDR) integrates any
remaining phase errors and compensates for gross differences between the transmitter reference
clock and the receiver reference clock. serdes.CDR and serdes.DFECDR use the first-order CDR
algorithm.

Phase Detector

The Alexander or bang-bang phase detector samples the received waveform at the edge and middle
of each symbol. The edge sample (e,) and data samples (d,.; and d,) are processed with some digital
logic to determine if the edge sample, and thus the clock phase, is early or late. The edge sample, e,
and data sample, d,, are separated by half of a symbol time.

Consider the waveform where a data transition has occurred, and both e, and d, are below the
decision threshold voltage. The binary values resolved from e, and d, match, which indicates the
clock phase is late.

1-3

1 Design and Simulate SerDes System Topics

Late Edge Sample

Waveform

15t ==me=m [ecision threshold |

0 0.5 1 15 2 25 3 35 4
Symbol Times

Similarly, when the binary values resolved from e, and d,.; match, the clock phase is early.

1-4

Clock and Data Recovery in SerDes System

Early Edge Sample

Waveform
----- Decision threshaold |

1571

0.5r1

Voltage
=]

0 0.5 1 1.5 2 25 3 3.5 4
Symbol Times

Representing the binary output of the sampler by +1, the behavior of the phase detector is
summarized here.

d,, e, d, Action

-1 -1 1 Clock phase is early. Shift phase to the right.
1 1 -1

-1 1 1 Clock phase is late. Shift phase to the left.

1 -1 -1

-1 X -1 No action is necessary.

1 X 1

Driving the VCO directly from the phase detector output results in excessive clock jitter. To eliminate
the jitter, the output of the phase detector is lowpass filtered by accumulating it in a vote. When the

accumulated vote exceeds a specific count threshold, the phase of the VCO is incremented or
decremented.

1-5

1 Design and Simulate SerDes System Topics

Jittered Received
Waveform Signal

p d

Recovering Clock Signal

Recover the clock signal from a repeating pseudorandom binary sequence (PRBS9) nonreturn to zero

(NRZ) signal. Consider the channel has 4 dB loss, the phase step size is ng the vote count threshold

’
>>¢'

Data Sampler

Edge Sampler

€

o d

L
T

n-1

n

n

Bang-Bang
Phase Detector VOt€

Low-Pass
Loop Filter phase
control

VCO

J\/_

SymbolTime/2

is 8, and that there are no phase or reference offsets.

The baseline behavior is shown with the eye diagram and the resulting clock probability distribution
function (PDF). The PDF is very near the center of the eye. The clock phase settles between a value of
0.5703 symbol time and 0.5781 symbol time. The dithering between the two values is a consequence
of the nonlinear bang-bang phase detector and is the source of CDR hunting jitter. To reduce the
magnitude of dithering, reduce the phase step size. To reduce the period of dithering, reduce the vote

count threshold.

1-6

Clock and Data Recovery in SerDes System

Voltage

_ Eye Diagram with Recovered Clock Distribution

0.6 T T T Channel Loss = 4 dB
phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset = 0
06 Clock Phase vs. Time
T
E 0.58
=
3056
=
-
9054
4}
b
= 0.52
o
0.5 L . L .
0 500 1000 1500 2000 2500
#of Symbols
- Early/Late count vs. Time
P
Jr
5 o
5
a 0
(8]
L
_5 -l
L
L - - - - -
6 -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500
Symbol Time ol Jymbois

The output of the phase detector is accumulated in the early/late vote count. When the count exceeds
the vote count threshold, the phase is incremented or decremented. To accelerate CDR convergence,
the count threshold starts at 2, and each time the magnitude of the vote exceeds the threshold, the
threshold is incremented until it reaches the maximum count. This figure shows the first 350 symbols
of the early/late count (blue) and the threshold (dashed red line). Internal to the CDR block, the vote
is incremented or decremented, checked against the threshold and then reset if necessary. The
external vote value shown in figure below does not touch the threshold but is evident when the vote is
reset to 0.

1 Design and Simulate SerDes System Topics

Count

1-8

Early/Late count vs. Time

50 100 150 200 250 300 350
of Symbols

To show the clock converging to a different phase, change the channel loss to 2 dB. The clock phase
now adapts to around 0.35 symbol time.

Clock and Data Recovery in SerDes System

\oltage

Eye Diagram with Recovered Clock Distribution
T T T T Channel Loss = 2 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset= 0
0 Clock Phase vs. Time
5
Iy
Epas
]
0
E 04
2
o
E 0.35 '_I I_| —
o
0.3 . : : :
0 500 1000 1500 2000 2500
of Symbols
10 Early/Late count vs. Time
|————————————— = —
=
]
[
c D
]
_5 "
S
. ! -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500

Symbol Time i of Symbols

Increasing the vote count threshold to 16 results in a larger dithering period.

1 Design and Simulate SerDes System Topics

Voltage

Eye Diagram with Recovered Clock Distribution
T T T T Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 16
Phase Offset =0

Reference Offset = 0

Clock Phase vs. Time

=
th
=3

=
tn
[=2]

Phase (Symbol Time)
= =
in in
(2% =

=
tn

0 500 1000 1500 2000 2500

3000

3500
of Symbols
20 Early/Late count vs. Time
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500 3000 3500
Symbol Time # of Symbols

1-10

Increasing the phase step size to 6i4 increases the dithering magnitude.

Clock and Data Recovery in SerDes System

Voltage

Eye Diagram with Recovered Clock Distribution
0.6 . .

0.4

0.2

-0.4

-0.6

Symbol Time it of Symbols

Manually shifting the data sampler location when the equalized eye does not display left/right
symmetry can maximize the eye height. For example, shift the clock phase to the right by % of a
symbol time to shift the output clock phase from 0.57 symbol time to 0.7 symbol time.

T T Channel Loss = 4 dB
phase step size = 0.015625
Vote Count Threshold = B
Phase Offset =0
Reference Offset = 0
08 Clock Phase vs. Time
e
£ 0.58
=
2056
E
=
\ B.0.54
a
@
= 0562
o
05 1 1 1 1
] 500 1000 1500 2000 2500
of Symbols
0 Early/Late count vs. Time
'_I' ________________
5(]
=
a 0
&
_5 |.
J_ L ___.
1 1 1 _1 D
] 0.2 0.4 0.6 0.8 1] 500 1000 1500 2000 2500

1-11

1 Design and Simulate SerDes System Topics

Voltage

1-12

Eye Diagram with Recovered Clock Distribution

0.6

0.4

0.2

-0.2

] 0.2 0.4 0.6 0.8
Symbol Time

Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0.125
Reference Offset = 0

Clock Phase vs. Time

0.75
rn
£ 07
[
2085
S
=
ook
[14]
]
= 0.55
o
D..J I I 1 1
0 500 1000 1500 2000 2500
of Symbols
10 Early/Late count vs. Time
P —
r
507
g
a 0
]
L
=5 -l
L
L e e —_ — = -
-10
0 500 1000 1500 2000 2500

of Symbols

You can also inject a small amount of reference clock frequency offset impairment to implement a

more realistic CDR.

Clock and Data Recovery in SerDes System

Voltage

Eye Diagram with Recovered Clock Distribution
0.6 T T T T Channel Loss = 4 dB

phase step size = 0.0078125
Vote Count Threshold = 8
Phase Offset =0
Reference Offset = 0.0003
Clock Phase vs. Time
0.65
N
E
=
= 08
0
E
=
@,
o 0.55
(]
m
=
o
0.5 . . L L
0 500 1000 1500 2000 2500
#of Symbols
0 Early/Late count vs. Time
'_I' ________________
e LT
2 =
g
a D
Q
-5 L
I_L ________________
08 -10
0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500
Symbol Time #of Symbols
References

[1] Sonntag, J. L. and Stonick, J. "A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s
Binary Links." IEEE Journal of Solid-State Circuits, 2006.

[2] Razavi, B. "Challenges in the design high-speed clock and data recovery circuits." IEEE
Communications Magazine, 2002.

See Also
CDR | DFECDR | serdes.CDR | serdes.DFECDR

1-13

1 Design and Simulate SerDes System Topics

Analog Channel Loss in SerDes System

1-14

In this section...

“Loss Model from Channel Loss Metric” on page 1-14
“Loss Model from Impulse Response” on page 1-14

“Introducing Cross Talk” on page 1-14

Limiting factors in high-speed data transmission includes cross talk, attenuation, and reflection noise.
The Analog Channel block and serdes.ChannellLoss System object™ parameterize a channel
model that represents a lossy transmission line typical in high-speed SerDes application. The loss
model is constructed either from a parameterized channel loss model or from an impulse response
from another source.

Loss Model from Channel Loss Metric

A discrete time, band-limited analog impulse response characterizes the serdes.ChannellLoss
System object. It represents the response of a system to an impulse response vector with an impulse
1

magnitude of JF where dt is the sample interval.

To calculate the impulse response, serdes.ChannellLoss first calculates the S-parameter
component S21 according to channel loss at frequencies ranging from 0 to f,,,, maximum frequency
of interest, where fiax = % This is done by determining the loss at the target frequency, and then
linearly extrapolating required channel length to achieve target channel loss. Then transmitter and
receiver termination S-parameter are then calculated according to the equations 93A-17 and 93A-18

from the IEEE 802.3bj-2014 specifications [1].

After calculating S21, the System object adds the negative frequency data points based on the
expected even symmetry of the real components of S21 and the odd symmetry of the imaginary
components of S21 of the frequency response. The impulse response is calculated from the inverse
Fourier transform of S21. Finally, the impulse response is resampled so that the sample interval is dft.

Loss Model from Impulse Response

To construct a loss model from an impulse response vector, input the impulse response vector from
another source. You can also define the impulse sample interval. Changing the symbol time and
number of samples per symbol changes the data rate of the SerDes system.

Introducing Cross Talk

You can include crosstalk in your simulation from the SerDes Designer app, or using the Analog
Channel block in Simulink®. If the parameterized channel loss model is used, you can specify the
strength of the near and far end crosstalk aggressors according to specification standards or you can
specify your own custom integrated crosstalk noise (ICN) levels. If a custom impulse response is
used, then up to 6 additional columns can be used to represent the crosstalk impulse response. For
more information, see Analog Channel and serdes.ChannellLoss.

Analog Channel Loss in SerDes System

References

[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and
Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables."
https://standards.ieee.org/standard/802 3bj-2014.html.

See Also
Analog Channel | SerDes Designer | serdes.ChannellLoss

1-15

https://standards.ieee.org/standard/802_3bj-2014.html

1 Design and Simulate SerDes System Topics

Manage IBIS-AMI Parameters

You can manage the IBIS-AMI parameters by opening the SerDes IBIS-AMI Manager dialog box from
the Configuration block.

Contents of IBIS File

The IBIS tab in the SerDes IBIS-AMI Manager dialog box defines the content of the IBIS file. Set the
parameters used to define the IBIS file in the AnalogOut and AnalogIn blocks in the SerDes
Designer app and in the IBIS tab in the SerDes IBIS-AMI Manager.

From the transmitter side in the AnalogOut block:

* Voltage (V) — Typical value of voltage range in the IBS file.
* R (Ohms) — Slope of the typical pull-up and pull-down IV curves in the IBS file.
* C (pF) — Typical value of the C comp in the IBS file.

From the receiver side in the Analogln block:

* Voltage (V) — Typical value of voltage range in the IBS file.
* R (Ohms) — Slope of the typical ground clamp IV curve in the IBS file.
* C (pF) — Typical value of the C_comp in the IBS file.

You can only enter the typical values for these parameters. You can define the Tx and Rx corner
percentage in the Export tab of the SerDes IBIS-AMI Manager dialog box. The minimum and
maximum values are generated by subtracting or adding to the typical value its fractional corner
percentage.

The performance of an input/output (I/O) buffer is a function of process, voltage, and temperature
(PVT). There are 27 PVT corners. IBIS supports three model corners: Typ, Min, and Max. When
generating the IBIS file, the Voltage (V), R (Ohms), and C (pF) values are used for the Typ corner.

* Min refers to the slow/weak corner. It groups slow process, low voltage, and high temperature.
The voltage and resistance are decreased and the capacitance is increased for the Min corner.

» Max refers to the fast/strong corner. It groups fast process, high voltage, and low temperature.
The voltage and resistance are increased and the capacitance is decreased for the Max corner.

You can also specify the IBIS-AMI model in the Export tab of the SerDes IBIS-AMI Manager dialog
box as single I/O, redriver or retimer. Selecting these model configurations changes the contents of
the IBIS file.

» Ifyou select I/O as the model configuration, the IBIS model is reconfigured to a single model of
ModelType I/O.

» Ifyou select Retimer or Redriver as the model configuration, the components of the IBIS file is
updated to include the repeater pins.

Contents of AMI File
The AMI - Tx and AMI - Rx tabs in the SerDes IBIS-AMI Manager dialog box define the content of

the AMI file. They contain the required and commonly used reserved AMI parameters. You can also
define the model-specific parameters for the relevant blocks.

1-16

Manage IBIS-AMI Parameters

There are five Reserved Parameters included in every AMI file generated by the SerDes Toolbox:

* AMI Version — IBIS version supported by the model

* Init_ Returns_Impulse — whether the model supports statistical simulation or not

* GetWave_Exists — whether the model supports time-domain simulation or not.

* Max Init Aggressors — the number of crosstalk aggressors supported by the model
¢ Modulation — the modulation scheme of the model.

If you select Retimer or Redriver as the model configuration in the Export tab of the SerDes IBIS-
AMI Manager dialog box, an additional Reserved Parameter Repeater_ Type is added to the AMI -
Rx tab. This parameter specifies the type of the repeater.

You can also define and modify the parameters of individual transmitter and receiver blocks. From
the Model Specific parameters, you can add new AMI parameters to specific blocks. For more
information, see “Managing AMI Parameters” on page 6-2.

You can also add a new tap structure to the equalizer blocks. These additional taps are included both
in the Simulink model and the exported IBIS-AMI models. The taps enable you to adjust equalization,
especially when you build your custom blocks from scratch.

You can also include standard-compliant transmitter and receiver jitter and noise parameters to the
Reserved Parameter section of the AMI file using the Reserved Parameters... button. The jitter
and noise parameters are only used in EDA tools. Simulink ignores these parameters.

Debugging AMI Files in EDA

To enable debugging the AMI files in EDA tools, in the AMI-Tx or AMI-Rx tab, click the Reserved
Parameters... button and select DLL_ID parameter. DLL_ID is a standard IBIS-AMI parameter that
appears as a Reserved Parameter. It also enables the AMI_Debug parameter as a

Model Specific parameter.

Set Enable value to true to output debug files. You can improve performance by setting Enable
value to false and not output any debug files, but still have the option to turn on debugging in the

EDA tools if necessary. Use Start_Time to define the simulation time at which debug output
generation begins.

See Also
Configuration

More About
. “Managing AMI Parameters” on page 6-2

External Websites
. https://ibis.org

1-17

https://ibis.org

1 Design and Simulate SerDes System Topics

Statistical Analysis in SerDes Systems

1-18

A SerDes system simulation involves a transmitter (Tx) and a receiver (Rx) connected by a passive
analog channel. There are two distinct phases to a SerDes system simulation: statistical analysis and
time-domain analysis. Statistical analysis (also known as analytical, linear time-invariant, or Init
analysis) is based on impulse responses enabling fast analysis and adaptation of equalization
algorithms. Time-domain analysis (also known as empirical, bit-by-bit or GetWave analysis) is a
waveform-based implementation of equalization algorithms that can optionally include nonlinear
effects.

The reference flow of statistical analysis differs from time-domain analysis. During a statistical
analysis simulation, an impulse response is generated. The impulse response represents the
combined response of the transmitter’s analog output, the channel, and the receiver’s analog front
end. The impulse response of the channel is modified by the transmitter model's statistical functions.
The modified impulse response from the transmitter output is then further modified by the receiver
model's statistical functions. The simulation is then completed using the final modified impulse
response which represents the behavior of both AMI models combined with the analog channel.

Impulse response modified
by Tx Init subsystem

Tx o Analog Channel R EEE—

Unequalized impulse
response

During a time-domain simulation, a digital stimulus waveform is passed to the transmitter model's
time-domain function. This modified time-domain waveform is then convolved with the analog
channel impulse response used in the statistical simulation. The output of this convolution is then
passed to the receiver model's time-domain function. The modified output of the receiver becomes the
simulation waveform at the receiver latch.

Digital stimulus Waveform modified Waveform modified by
‘waveform by transmitter analog channel

Y

Tx

Y

Analog Channel

Y

Stimulus

In SerDes Toolbox, the Init subsystem within both the Tx and Rx blocks uses an Initialize Function
Simulink block. The Initialize Function block contains a MATLAB® function to handle the statistical
analysis of an impulse response vector. The impulse response vector is generated by the Analog
Channel block.

The MATLAB code within the Init subsystems mimics the architecture of Simulink time-domain
simulation by initializing and setting up the library blocks from the SerDes Toolbox that implement
equalization algorithms. Each subsystem then processes the impulse response vector through one or
more System objects representing the corresponding blocks.

Statistical Analysis in SerDes Systems

Additionally, an Init subsystem can adapt or optimize the equalization algorithms and then apply the
modified algorithms to the impulse response. The output of an Init subsystem is an adapted impulse
response. If the Init subsystem adapts the equalization algorithms, it can also output the modified
equalization settings as AMI parameters. These modified equalization parameters can also be passed
to the time-domain analysis as an optimal setting or to provide a starting point for faster time-domain
adaptation.

Init Subsystem Workflow

In a Simulink model of a SerDes system, there are two Init subsystems, one on the transmitter side
(Tx block) and one on the receiver side (Rx block). During statistical analysis, the impulse response of
the analog channel is first equalized by the Init subsystem inside the Tx block based on the System
object properties. The modified impulse response is then fed as an input to the Rx block. The Init
system inside the Rx block further equalizes the impulse response and produces the final output.

The System objects corresponding to the Tx and Rx blocks modify the impulse response in the same
order as they were received. If there are multiple self-adapting System objects in a Tx or Rx block,
each System object finds the best setting for the impulse response and modifies it before sending it to
the next System object.

The final equalized impulse response is used to derive the pulse response, statistical eye, and the
waveforms.

1-19

1 Design and Simulate SerDes System Topics

4 Init Statistical Analysis Results — O *
File Edit View Inset Tools Desktop Window Help u
Ddde | @ 08| & E
Pulse Response Statistical Eye
_ - : - - . 0.4 : . 10"
0.6
Unequalized pa[t]
Equalized pa[t]
04} =
=
= 3
0.2} e
0 I I I I
o 1 2 3 4 5 0 20 40 60 a0 100
[s] %107 [ps]
Waveform Derived from Pulse Response
0.5 - .
1 [Unequalized p, (1) Na_me | ==
Eoualized o. it 1 |Eye Height V) 0.4330
i]
qualzed Pl 2 |[Eyewidth(ps) 914396
3 |EveArea V.. 25.8097
= 0 4 |com 217733
h 5 |VEC 0.7387
-l
|
1 IIJI
0.5 :
o 0.5 1 1.5
[s] %107

SerDes System Using Init Subsystem

To understand how an Init subsystem handles statistical analysis in a SerDes system, create a SerDes
system using the SerDes Designer App. The SerDes system contains an FFE block on the Tx side
and CTLE and DFECDR blocks on the Rx side. Use the default settings for each block.

Tx Rx
| | DFE f
.—[FFE H D’ J Channel { Dv H CTLE H it J—~
FFE AnalogOut Channel Analogin CTLE DFECDR

1-20

Statistical Analysis in SerDes Systems

Export the SerDes system to a Simulink model. In Simulink, double-click the Tx block to open the Init
block. Then double-click the Init block to open the Block Parameters dialog box. Click the Show Init
button to open the code pertaining to the Init function of the transmitter.

The Init function first reshapes the impulse response vector of the analog channel into a 2-D matrix.
The first column in the 2-D matrix represents the analog channel impulse response (victim). The
subsequent columns (if any are present) represent the crosstalk (aggressors).

%% Impulse response formatting

% Size ImpulseOut by setting it equal to Impulseln

ImpulseOQut = Impulseln;

% Reshape ImpulselIn vector into a 2D matrix using RowSize and Aggressors called LocalImpulse

LocalImpulse = zeros(RowSize,Aggressors+l);

AggressorPosition = 1;

for RowPosition = 1:RowSize:RowSize*(Aggressors+1)
LocalImpulse(:,AggressorPosition) = ImpulseIn(RowPosition:RowSize-1+RowPosition)';
AggressorPosition = AggressorPosition+1;

end

Then the Init function initializes the System objects that represent the blocks on the Tx side and sets
up the simulation and AMI parameters and the block properties. In this SerDes system, there is only
one block on the Tx side, FFE.

% Instantiate and setup system objects
Create instance of serdes.FFE for FFE
FFEInit = serdes.FFE('WaveType', 'Impulse');
% Setup simulation parameters
FFEInit.SymbolTime = SymbolTime;
FFEInit.SampleInterval = Samplelnterval;
% Setup FFE In and InOut AMI parameters
FFEInit.Mode = FFEParameter.Mode;
FFEInit.TapWeights = FFEParameter.TapWeights;
% Setup FFE block properties
FFEInit.Normalize = true;

%
%

The channel impulse response is then processed by the System object on the Tx side.

%% Impulse response processing via system objects
% Return impulse response for serdes.FFE instance
LocalImpulse = FFEInit(LocalImpulse);

The modified impulse response in 2-D matrix form is reshaped back into an impulse response vector
and sent to the Rx side for further equalization.

%% Impulse response reformating
% Reshape LocalImpulse matrix into a vector using RowSize and Aggressors
ImpulseOut(1l:RowSize*(Aggressors+l)) = LocalImpulse;

Similarly, if you look at the Rx Init code, you can see that the Rx Init function first reshapes the output
of the Tx Init function into a 2-D matrix.

Then the Init function initializes the System objects that represent the blocks on the Rx side and sets
up the simulation and AMI parameters and the block properties. In this case, there are two blocks on
the Rx side, CTLE and DFECDR.

%% Instantiate and setup system objects
% Create instance of serdes.CTLE for CTLE

1-21

1 Design and Simulate SerDes System Topics

CTLEInit = serdes.CTLE('WaveType', 'Impulse');

% Setup simulation parameters

CTLEInit.SymbolTime = SymbolTime;
CTLEInit.SampleInterval = Samplelnterval;

% Setup CTLE In and InOut AMI parameters
CTLEInit.Mode = CTLEParameter.Mode;
CTLEInit.ConfigSelect = CTLEParameter.ConfigSelect;

% Setup CTLE block properties

CTLEInit.
CTLEInit.
.ACGain = 0;
CTLEInit.
CTLEInit.
CTLEInit.

CTLEInit

Specification = 'DC Gain and Peaking Gain';
DCGain = [0 -1 -2 -3 -4 -5 -6 -7 -8];

PeakingGain = [0 1 2 3 4 56 7 8];
PeakingFrequency = 5000000000;
GPZ = [0 -23771428571 -10492857142 -13092857142;-1 -17603571428 -7914982142 -1334464285

-2 -17935714285 -6845464285 -13596428571;-3 -15321428571 -5574642857 -13848214285;...
-4 -15600000000 -4960100000 -14100000000;-5 -15878571428 -4435821428 -14351785714;...
-6 -16157142857 -3981285714 -14603571428;-7 -16435714285 -3581089285 -14855357142;...

-8 -16714285714 -3227142857 -15107142857];

% Create instance of serdes.DFECDR for DFECDR
DFECDRInit = serdes.DFECDR('WaveType', 'Impulse');

% Setup simulation parameters

DFECDRInit.SymbolTime = SymbolTime;
DFECDRInit.SampleInterval = Samplelnterval;
DFECDRInit.Modulation = Modulation;

% Setup DFECDR In and InQut AMI parameters
DFECDRInit.ReferenceOffset = DFECDRParameter.ReferenceOffset;
DFECDRINnit.PhaseOffset = DFECDRParameter.PhaseOffset;
DFECDRInit.Mode = DFECDRParameter.Mode;
DFECDRInit.TapWeights = DFECDRParameter.TapWeights;
% Setup DFECDR block properties
DFECDRInit.EqualizationGain = 9.6e-05;
DFECDRInit.EqualizationStep = 1le-06;
DFECDRInit.MinimumTap = -1;

DFECDRINnit.MaximumTap 1;

DFECDRInit.Count = 16;

DFECDRINnit.ClockStep = 0.0078;

DFECDRInit.Sensitivity = 0;

The impulse response that was previously modified by the System objects on the Tx side is then
further modified by the System objects on the Rx side.

% Impulse response processing via system objects

Return impulse response and any Out or InOut AMI parameters for serdes.CTLE instance

Return impulse response and any Out or InOut AMI parameters for serdes.DFECDR instance

[LocalImpulse, CTLEConfigSelect] = CTLEInit(LocalImpulse);
[

LocalImpulse, DFECDRTapWeights, DFECDRPhase, ~, ~] = DFECDRInit(LocalImpulse);

The final equalized impulse response in 2-D matrix form is reshaped back into an impulse response

vector.

Each Init function also contains a section, Custom user code area, where you can customize your own

code.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

1-22

Statistical Analysis in SerDes Systems

For more information on how you can use the Custom user code area, see “Customizing Datapath

Building Blocks” on page 5-11 and “Implement Custom CTLE in SerDes Toolbox PassThrough Block”
on page 5-20.

See Also
CTLE | DFECDR | serdes.CTLE | serdes.DFECDR

More About

. “Customizing Datapath Building Blocks” on page 5-11

. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-20
. “Managing AMI Parameters” on page 6-2

. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

1-23

Customize SerDes Systems Topics

2 Customize SerDes Systems Topics

Customize SerDes System in MATLAB

Open the SerDes Designer app. In the CONFIGURATION tab of the app toolstrip, set Symbol
Time (ps) to 125 and Target BER to 1le-12.

In a new blank canvas, add an FFE block to the Tx side. Add an AGC, a CTLE and a DFECDR block to
the Rx side.

Tx Rx

B B = =

FFE AnalogQut Channel Analogin CTLE DFECDR

2-2

Select the channel block. Set Channel loss (dB) to 13.

From the EXPORT tab of the app toolstrip, select Generate MATLAB code for SerDes System. A
MATLAB script open that represents the command line interface to the SerDes system.

The MATLAB script contains the code to generate the transmitter and receiver building blocks and
analog models. It also contains the channel information and SerDes system configuration. The script
exposes every parameter that is part of the SerDes system. You can modify the parameters to further
explore the SerDes system.

For example, to see the effect of Channel loss on the SerDes system, scroll down to the section of
the MATLAB script that says % Build ChannelData. Replace the default code section with the
following code:

% Build ChannelData:

channelloss = 5;

channel = ChannelData(...
'ChannelLossdB', channelloss,
"ChannellLossFreq',5000000000, .
"ChannelDifferentialImpedance',100);

Save the change and run the script. Keep changing the value of channellLoss to see the effect of
changing channel loss.

The eye diagram when the Channel loss is set to 5 dB:

Customize SerDes System in MATLAB

Statistical Eye

0.4 T T T T T T T "II}{:

03T
4 ,.ID-“I

0.2r
4 ,.ID-E

01T
= 0r {102

011
4 '1|:|‘q

D271
4 ,.ID-E

D31
0.4 1 1 1 1 1 1 1 1["6

=20 0 20 40 60 a0 100 120 140

[ps]

The eye diagram when the Channel loss is set to 16 dB:

2-3

2 Customize SerDes Systems Topics

Statistical Eye

0.3 : 10°
0.2} 11072
0.1 107
= of 108
01F 1078
02t 10-10
0.3 : : : : : ' ' 10712
-20 0 20 40 60 80 100 120 140

[ps]

After you finalize the SerDes system with your desired Channel Loss, you can export the MATLAB
script of the SerDes system as a Simulink model. From the Simulink canvas, you can perform further
time-domain analysis, or export the system to a AMI model.

See Also
AGC | CTLE | DFECDR | FFE | SerDes Designer | serdes.ChannelLoss

2-4

Create and Customize IBIS-AMI Models
Topics

» “SiSoft Link” on page 3-2
* “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-3

3 Create and Customize IBIS-AMI Models Topics

SiSoft Link

3-2

The SiSoft Link app is used to test the SerDes models developed in Simulink using SerDes Toolbox in
SiSoft Quantum Channel Designer (QCD) and Quantum Signal Integrity (QSI) software. You can
transfer the data required to reproduce a QCD or QSI test case back to Simulink® for debugging and
refinement. You need SiSoft 2018.07-SP4 or later software.

Using the SiSoft Link app, you can:

* Create a QCD project.

* Create a QSI project.

* Import QCD or QSI simulation data into Simulink.
* Update QCD or QSI with new data from Simulink.

To test the SerDes model in QSI or QCD software, first download the SerDes Toolbox Interface for
SiSoft Quantum Channel Designer and QSI Software from the Add-On Explorer. For more information
on downloading add-ons, see “Get and Manage Add-Ons” (MATLAB).

To access the SiSoft link app:

* From the Apps tab in the MATLAB toolstrip, click on SiSoft Link app icon.
* In the MATLAB command prompt, enter sisoftLink.

See Also

More About

. “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software” on page 3-
3

External Websites
. https://sisoft.com

https://sisoft.com

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

SerDes Toolbox Interface for SiSoft Quantum Channel Designer
and QSI Software

This example shows how to use SerDes Toolbox Interface for SiSoft Quantum Channel Designer and
QSI Software support package to test IBIS-AMI SerDes models developed in Simulink using SerDes
Toolbox, in SiSoft Quantum Channel Designer (QCD) or Quantum Signal Integrity (QSI) software. You
can transfer the data required to reproduce a QCD or QSI test case back to Simulink for debugging
and refinement. You need SiSoft 2018.07-SP4 or later software to run this example. You must also
have installed the SiSoft Link app provided with the support package.

SerDes Development Flow

SerDes model development begins with the SerDes Designer app. The app exports a Simulink model
with transmitter (Tx) and receiver (Rx) SerDes models and a testbench to simulate and further
develop the SerDes designs. Test the models in QCD or QSI to verify proper IBIS-AMI model
operation in a target EDA tool. Due to the high performance of IBIS-AMI executable models, run
many simulations to verify the full range of model capabilities, testing with all possible AMI
parameters and a variety of stimuli and interconnect channels. Replicate the simulation cases
warranting closer inspection in Simulink to reproduce and debug the test. Repeat this cycle as many
times as needed, updating the QCD/QSI project and Simulink model.

Create SerDes Toolbox System Model

Open the SerDes Designer app from the Apps toolstrip. Use the app to quickly prototype and
statistically analyze a SerDes system with a Tx and an Rx.

3-3

3

Create and Customize IBIS-AMI Models Topics

4\ SerDes Designer - untitled* - O *

o O e,

EEEEE. GemmeemEon -

Mew Open Sawe CONFIGLRATION BLOCKS Add Plots 05 Auto-Analyze LAYQUT
- -
- - - " = -
- i s S 4 | % Export SerDes System to Simulink .
SerDes System | = Generate MATLAB code for SerDes System
| B make IBIS-AMI model for SerDes System
Tx Rx
| | Salurat DFE/
— L -) — - L |oaliravng: |
o——| FFE | D Channe! D | AGC ==t CTLE [=miS0CS Cor |- ||
g \ L g ‘I
FFE AnalogQut Channel Analogin AGC CTLE Sathmp DFECDR
Block Parameters i | Statistical Eye |
DFECDR (DFECDR) Statistical Eye

Mame: DFECOR

PMode |adapt ~
Initial tap weights (V) [[0 0 0 0]
Minimum tap value (V) -1

Maximum tap value (V) 1

e

3-4

Add blocks from the Blocks gallery to the Tx and Rx sides. If you change the block parameters, the
statistical eye display shows the performance changes. Click on Export SerDes System to Simulink
from the Export dropdown menu to create a Simulink model for the system.

Prepare SerDes Simulink Model for QCD/QSI

The SiSoft QCD and QSI software requires IBIS models to simulate the Tx and Rx of your system. Use
the “Open SerDes IBIS-AMI Manager” button in the Configuration block to produce the IBIS files. In
the Export tab of the SerDes IBIS-AMI Manager dialog box choose a target directory and click the
Export button to create the set of IBIS files.

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

4| SerDes IBIS-AMI Manager — O >

Export IBIS AMI-Tx AMI - Bx

IBIS Settings

Tx model name | serdes3_ix |

Fx model name | serdes3_rx |

Tx and Rx cormer percentage

AMI Model Settings - Tx AMI Model Settings - Rx
Model Type Model Type
(@) Dual model (®) Dual model
() Getwave only () GetWave only
() Init only) Init only

Bits to ignore Ijl Bits to ignore I:I

File Creation Options

Muodels to export

(#) Both Tx and Rx IBIS file
() Tx only IBIS file name (.ibs) | serdes3.ibs
() Rx only AMI file(s)
DLL file(s)
Target directory |L:‘|IBIS | Browse. . |

| Close |

Create QCD Project

e
Click the SiSoft Link ' icon from the Apps tab in the MATLAB toolstrip to open the SiSoft Link
app.

If your SerDes system model is open in Simulink, it is listed in the Simulink Model dropdown menu
in the SiSoft Link app. Click the Refresh button if your model is not listed. Set the QCD/QSI project
dropdown menu to New QCD project (create) and click Create QCD. If there are unresolved
issues regarding the selected Simulink model, Create QCD button remains disabled.

3 Create and Customize IBIS-AMI Models Topics

4 SiSoft Link — O
Simulink model [serdes3 - |
QCDIQSI project | Mew QCD project (create) L4 | | Browse...
Create QCD Import from QCD
Update 2 aramete Interface b
Ipdate = | SerDes IBIS-AMI Manager . | Sheet v
Tx Hx State ¥
Jpdate .d e Simulation b
Tx Rx
[createacD | 2 | (2]
| Close | | Refresh | |Help v |

Choose a folder in which the QCD project resides and a name for the project folder. The folder path
and project name must not have spaces. If you have not yet used SiSoft Link to create a project, the
system asks you to locate the folder containing your SiSoft software. A report window appears and
QCD opens executing a script produced by SiSoft Link. When script execution finishes, the QCD

project interface is renamed after your SerDes system model, with a single sheet sheet1.

3-6

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

E Quantum Channel Designer 300: serdes1.qcd Project: LASISoft\SiSoftLink\test\serdes]_qcd — (] 4
File Edit Libraries Setup SimData Run Logs Reports Tools DOE Help
S —— e S e) a— P— . — e,
D@ »&aXxo - % e BIQARIA|E»BIRE #H & [
[Pre-Layout Analysis | Post-Layout Verification |
el serdes
=W (M Tx RX1
] :ﬁtl;dlfs_‘xmll W1 ;.erdgs
Dps - ps ®
=ik HNone = 0 diff_strip_1... serdes_rx
$Wi:Length
i a's i g
LD =
- T—

o

| _Eﬂsheeﬁ '

ol W

Solution Space: Sheet Options: [_] Case Mode
Transfer | Variation |
Met Variable: Type: Format: Group: . _Value 1: Value 2 il |
sheetl |RX1:DFECDR TapWeights3 [Tap AMIRange RX1Tap [0 i =l
sheet! IRX1.DFECDR.TapWeights 4 |Tap |AMI Range |RX1Tap {i [|
[lsheet1 TX1:FFE Mode integer |AMIList |<none> fixed || -
sheet! 'TX1:FFE TapWeights -1 Tap AMIRange |TX1Tap [|
sheett [TX1:FFE.TapWeights 0 Tap AMIRange [TX1Tap |1 .i =
sheetl [TX1:FFE TapWeights. 1 [Tap |AMI Range |TX1:Tap 0] | |=|
Reference Set set1 | Unset Current Set sett QCD Simulation Cnun_

The following data are copied from Simulink to QCD:

The QCD interface has the same name as the Simulink model.

QCD has one sheet, sheetl.

All IBIS files is copied into the QCD project si_1ib/ibis folder.
All Tx and Rx model parameter values from Simulink is set in the QCD solution space.
Simulation parameters are set: UI, Samples_Per Bit, and TargetBER.

Create QSI Project

To create a QSI project, set the QCD/QSI project dropdown menu to New QSI project (create)
and click the Create QSI button. The process is otherwise similar to that for QCD. Typically, IBIS-
AMI models are used in QSI for analysis of single-ended DDR4/5 DQS signals with equalization. If
that is the case, double click the Configuration block in the Simulink model to open it, and set
Signaling to Single-ended before creating the QSI project.

3 Create and Customize IBIS-AMI Models Topics

Block Parameters: Configuration >
Configuration (mask) (link)
Configure system wide settings in a SerDes Toolbox model.

Farameters

Symbol time (s) 125e-12 IE

Samples per symbol 16 -

Sample interval (s): 7.8125e-12

Target BER | 1e-06 IE

Medulation MNRZ -

Signaling Single-ended -
Differential

Analysis

Plot statistical analysis after simulation

Tools

Open SerDes IBIS-AMI Manager

Cancel Help Apply

For QSI the following simulation parameters are set:

* The QSI interface has the same name as the Simulink model.

* QSI has one sheet, sheet1.

» All IBIS files is copied into the QSI project si 1ib/ibis folder.

» All Tx and Rx model parameter values from Simulink is set in the QSI solution space.
» Simulation parameters are set: Ul, Samples_Per_Bit, and TargetBER.

* The Tx rise_time is copied from the typical corner value in the IBIS file.

+ Time_Domain_Stop is set to Ignore Bits + 20,000 UI.

* Record_Bits is set to 100 and Record_Start is set accordingly.

Import QCD or QSI Simulation Data into Simulink

After simulating in QCD or QSI, you can import data to reproduce a simulation in Simulink. You must
select the project in the QCD/QSI project dropdown menu. Click the Browse... button to choose a
desired QCD or QSI project if it is not listed in the QCD/QSI project dropdown menu.

3-8

SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

4| SiSoft Link — | oy
Simulink model | serdes3 A
QCDIQSI project |fLZ\SiSUﬂ'I.SiSDﬂLinK".tEEt'I.DCD'LEEdeEEZ r | Browse...
pdate QCD Import from QCD
+'| Update simulation parameters Interface serdes? L4
| Update .ibs file SerDes IBIS-AMI Manager .. Sheet sheet1 L
TX Rx State default L4
Simulation | god_tite hd

v'| Update simulation parameters

v |+ Update solution space v'| Update stimulus pattern
v'| Update channel impulse response
Tx Rx

| |+ Update parameters

Close Fefresh Help v

The following data are copied from QCD/QSI to Simulink, as enabled by the Import section
checkboxes:

* All Tx and Rx model parameter values from the selected simulation are set in corresponding
blocks in the Simulink model.
* Modulation, SymbolTime, and SampleInterval are set in the Configuration block.

* The time domain stimulus pattern is set in the Stimulus block, even if only statistical simulations
are run in QCD/QSI.

* The channel impulse response from QCD/QSI is set in the Analog Channel block.
A report is generated giving the details of the import.
Update QCD or QSI with New Data from Simulink

To support iterative development, selectively update a QCD or QSI project with data from Simulink.
When a QCD or QSI project path is selected in QCD/QSI project dropdown menu, the Create QCD
(or Create QSI) button becomes Update QCD (or Update QSI). The checkboxes above the button
are enabled to choose the data to be updated. If Update .ibs file is checked, the checkboxes for .ami
files and .dll/.so files are forced on, since importing the .ibis file in QCD or QSI always imports the
other files along with it.

3-9

3 Create and Customize IBIS-AMI Models Topics

4| 5iSoft Link - O X
Simulink model | serdes3 v |
QCD/QSI project | L\SiSof\SiSoftLinkitestiQCDiserdes32 v | | Browse . |
4 Overwrite multiple sweep simulations? — >
L
9 Update will replace 10 sweep simulaticns with a single simulation. rdes? - |
Procesd?
: pet1 v |
OK { | Cancel
: ance fault v |
| || Update .ami file Simulation [ch_ttte_bd_tapz v

Update .dilf so files Update simulation parameters
Update solution space Update stimulus pattern
Update channel impulse response
Tx Rx

Update parameters

| Updateacp | f 2 | [mport | [7]

| Close | | Refresh | |Help v |

Clicking Update QCD (or Update QSI) runs the QCD (or QSI) to open the project and makes the
changes. To avoid conflicts, you must close the project before updating it.

See Also
Analog Channel | Configuration | SerDes Designer | Stimulus

More About
. “SiSoft Link” on page 3-2

External Websites
* https://sisoft.com

3-10

https://sisoft.com

Designh and Simulate SerDes Systems
Examples

* “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2
* “Convert Scattering Parameter to Impulse Response for SerDes System” on page 4-6

* “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-11

4 Design and Simulate SerDes Systems Examples

Find Zeros, Poles, and Gains for CTLE from Transfer Function

This example shows how to configure the Specification parameter GPZ Matrix of a CTLE in the
SerDes Designer app to use zeros, poles, and gains output by the zpk function, given poles and
residues output by the rational function. You can reformat the set of zeros, poles, and gains output
by the zpk function to use as a GPZ matrix in a CTLE block.

Import Transfer Function

Import a .csv file containing a transfer function using the readmatrix function.

ctle transfunc = readmatrix('transfer function.csv', 'Range','A7:C775");
freq = ctle transfunc(:,1);
ri = ctle transfunc(:,2:end);

Convert Transfer Function to Complex Form

To prepare data for use by the rational function, convert the real numbers from the transfer
function to complex numbers using the complex function.

data = complex(ri(:,1:2:end),ri(:,2:2:end));
Find Rational of Transfer Function

You can use the rational function to find the best fit to the transfer function. The rational
function performs iterations to identify a fit with the lowest error. It is important to set the argument
TendsToZero to true to add a pole so that the fit tends to zero as S approaches infinity. This meets
the requirement to have one more pole than the number of zeros in the GPZ matrix.

bestfit = rational(freq,data, 'Tolerance',-40, 'TendsToZero',true, 'MaxPoles',8, 'Display','on');

nSurrogate=1; reduced to 100.0%
min achievable error=-Inf

Region 1 of 1 init: np=0 errdb=0
Region 1 of 1: np=0 errdb=1.90887
Region 1 of 1: np=2 errdb=-25.4479
Region 1 of 1: np=4 errdb=-98.7295
final: np=4 errdb=-102.116

Convert to Zeros, Poles, Gains from Poles and Residues

The rational function returns poles and residues, but you need to convert these into zeros, poles
and gains for a CTLE block. The CTLE can be configured to use Specification parameter GPZ
Matrix where the units for gains, poles and zeros are dB, Hz, and Hz, respectively.

[z,p,~,dcgain]=zpk(bestfit);

gpz(1,1) = dcgain;
gpz(1,2:2:1length(p)*2)

= p;
gpz(1,3:2:1length(z)*2+1) =

Z,;
Configure CTLE Block in SerDes Designer

Launch the SerDes Designer app. Place a CTLE block after the analog model of the receiver. Select
the CTLE and from the Block Parameters pane, set the Specification parameter to GPZ Matrix.
Then copy the value of the gpz variable and paste it to the Gain pole zero matrix parameter.

4-2

Find Zeros, Poles, and Gains for CTLE from Transfer Function

4\ SerDes Designer - untitled* - O X
SERDES DESIGNER = 4 B Eese
oo 7 |5 symeoimme ps) 100 T . . s | F— E 4
= =R -] AGC FFE VGA e -
New O Sa) : ; Delete AddPiots Defaut Export
W pen :B T BER’F‘ Signaling Differential - & - [Auto-Analyze au 30
FILE CONFIGURATION BLOCKS ANALYSIS LAYOUT | EXFORT a
| SerDes System
Tx Rx
.—{ D Channel }~~{ D }> CTLE
AnalogOut Channel Analogin CTLE

Block Parameters | Plots |

CTLE (CTLE)

Name: |CTLE
Mode | adapt ~
Cenfiguration select |0 ~
Specification | GPZ Matrix ~

Gain pole zero matrix | 42,-8 - 16714285714 -3227142857 -15107142857]

Correlate Pulse Response in SerDes Designer to IBIS-AMI Simulation

In the SerDes Designer app, plot the CTLE Transfer Function and Pulse Response from the Add Plots
button.

4-3

4 Design and Simulate SerDes Systems Examples

4\ SerDes Designer - untitled* X
s oo
R = R I 0} Analyze &
Samples per Symbol (16 ~| - -
MNew Open Save _ AGC FFE Delete Add Plots LAYOUT | Export
- Target BERM SEp=ls| Oritaain = Auto-Analyze -
FILE COMNFIGURATION BLOCKS ANALYSIS EXPORT a
| Block Parameters | | SerDes System |
Name: |CTLE
Mode |adapt ~ Tx Rx
Specification | GPZ Matrix = - n - - P -
Gain pole zero matrix |2923941713.726i 8411875755.72416 - 323190954503, J .—{ D }~~{ Channel }“{ D }‘ CTLE
AnalogOut Channel Analogin CTLE
| CTLE Transfer Function: CTLE | Pulse Response
CTLE
SerDes CTLE Transfer Function Family Pulse Response
1 — 0.7 T T B T T T T T T
Il Unequalized
| lI Equalized
|
0.95 | 0.6 - |[‘|| _
Jus} \ I
- \ Il
09t \ 1 I
- \ 05 ¢ || 1
| |
0.85 * * "
. | | |
107 10® 10° 10 10" o4 |||
Hz i > Il
— |
3.2 03[Il b
I
I [
|
o _%H"“\x | | |III
. B 0.2 | .
= | 1
g 37 | \
B \
01 b b
29 || \
| N\
)
28 : : : o L— o i ——
107 10° 10° 10" 10" 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Hz [s] x10°

4-4

Then click the Export > Make IBIS AMI Model for SerDes System button. The IBIS-AMI model
may be loaded into an appropriate EDA tool to plot the Pulse Response from the model. For

correlation purposes, you can compare the plots for Pulse Response from the SerDes Designer app
and the EDA tool.

See Also
CTLE | SerDes Designer

Find Zeros, Poles, and Gains for CTLE from Transfer Function

More About

. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes
Performance” on page 4-11

4 Design and Simulate SerDes Systems Examples

Convert Scattering Parameter to Impulse Response for SerDes
System

This example covers two topics: the first focuses on the concatenation of three scattering parameters
(S-Parameters) that represent a communication channel along with the analog components of a
transmitter and of a receiver into a single 4-port S-Parameter, the second focuses on the conversion
of this 4-port S-Parameter to an impulse response for use with SerDes Toolbox™. You will use the
rationalfit function from the RF Toolbox™ to find the impulse response of the S-Parameter that
represents a communication channel employing True and Complement differential signaling. For
more information, see Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational
Function).

Configure Variables

The S-Parameter file must be a 4-port .s4p file. Normalize the transmitter (Tx) and receiver (Rx)
impedances to 50 Ohms. The Datarate and SamplesPerSymb valuses must match the settings of
the SerDes system and are set to 10 GHz and 32, respectively. The control parameters for the
rationalfit function include delayStart, delayStep, delayStop, and nPoles. Adjust the
resolution of the impulse response using pointsInImpulse.

filename = 'default.sdp';

TxR = 50;
TxC = 0.1e-12;
RxR = 50;
RxC = 0.2e-12;

datarate = 10*1e9;
samplespersymb = 32;

delayStart = 0.68;

delayStep = 0.01;
delayStop = 0.73;
nPoles = 120;

Rshort = 1.0e-6;
pointsInImpulse = 16384;
showPlots = true;

Create Differential S-Parameter Representation of Communication Channel

Calculate the symbol time and the sample interval. Import the S-Parameter data file and keep the
original frequency content.

pulsewidth = 1/datarate;

ts = pulsewidth/samplespersymb;
origSparam = sparameters(filename);
freq = origSparam.Frequencies;

Combine S-Parameter of Communication Channel with Analog Sections of Transmitter and
Receiver

Create the analog Tx and Rx circuits as S-Parameters. Then combine the S-Paramater models of the
Tx and Rx circuits with S-Parameter model of Communication Channel.

Convert Analog Model of Transmitter to S-Parameter

cktTx = circuit('txAnalog');
add (cktTx,[1 3], resistor(TxR, 'R1'))

4-6

https://www.mathworks.com/help/rf/examples/modeling-a-high-speed-backplane-part-2-4-port-s-parameters-to-a-rational-function.html
https://www.mathworks.com/help/rf/examples/modeling-a-high-speed-backplane-part-2-4-port-s-parameters-to-a-rational-function.html

Convert Scattering Parameter to Impulse Response for SerDes System

add(cktTx, [3 0], capacitor(TxC, 'C1")
add (cktTx,[2 4], resistor(TxR, 'R2"'))
add(cktTx, [4 0], capacitor(TxC, 'C2"))

setports(cktTx,[1 0],[2 0],[3 0],[4 0])
StxAnalog = sparameters(cktTx,freq,50);

)

Configure Port Order for S-Parameter of Communication Channel

cktCh = circuit('ChannelSparam');

channel = nport(filename); % Create s-parameter circuit element
add(cktCh,[1 3 2 4],channel);

setports(cktCh,[1 0],[2 0],[3 0],[4 0])

Schannel = sparameters(cktCh,freq,50);

Convert Analog Model of Receiver to S-Parameter

cktRx = circuit('rxAnalog');

add (cktRx,[1 0], resistor(RxR, 'R3"'))
add(cktRx, [1 0], capacitor(RxC,'C3'))
add (cktRx,[2 0], resistor(RxR, 'R4'))
add(cktRx, [2 0],capacitor(RxC,'C4'))
add (cktRx,[1 3], resistor(Rshort, 'R5"'))
add(cktRx,[2 4],resistor(Rshort, 'R6"'))
setports(cktRx,[1 0],[2 0],[3 0],[4 0])
SrxAnalog = sparameters(cktRx,freq,50);

Create Combined S-Parameter Object

Concatenate the S-Parameters using cascadesparams. Set values of data, freq and z0 for use by
the rationalfit function. Use s2sdd to convert the data to a 4-port differential S-Parameter
diffdata and set the port order to 1234. Note: RF Toolbox applies ports first from top to bottom on
an S-parameter, then from left to right.

sparamWithAnalog = cascadesparams(StxAnalog,Schannel,SrxAnalog);
data sparamwWithAnalog.Parameters;

freq sparamwWithAnalog.Frequencies;
z0 = sparamWithAnalog.Impedance;

diffdata = s2sdd(data,2);
diffz0 = 2*z0;
diffsparams = sparameters(diffdata,freq,diffz0);

Compute Analytical Form of Transfer Function with Rational Fit

Find the transfer function from the diffdata, reference impedance of the S-Parameters, source
impedenance in the Tx analog model, and the load impedance in the Rx analog model.

zRef = diffz0; % Reference impedance of S-Parameters

zSource = le-6; % Short circuit the source impedance since it is included in the Tx Analog mode
zLoad = 1e6; % Open circuit the load impedance since it is included in the Rx Analog model.
difftransfunc = s2tf(diffdata, zRef,zSource, zLoad);

Create the rationalfit of the diff S-Parameter. Sweep the delay factor and keep the best fit. Then
plot the derived rationalfit result.

bestErr

= 0;
bestDelay =

0;

4 Design and Simulate SerDes Systems Examples

4-8

bestRationalFit = rfmodel.rational();

for delaySweep = delayStart:delayStep:delayStop
[rationalfunc,errdb] = rationalfit(freq,difftransfunc,-50, 'DelayFactor',delaySweep, 'Iteratio
if errdb < bestErr
bestErr = errdb;
bestDelay = delaySweep;
bestRationalFit = rationalfunc;
end
fprintf('.");

rationalfunc = bestRationalFit;
npoles = length(rationalfunc.A);
fprintf('\nThe derived rational function achieved %f dB fit with %f delay and %d poles.\n', bestE

The derived rational function achieved -70.026558 dB fit with 0.680000 delay and 120 poles.

Create the impulse response.
[imp,impt]=impulse(rationalfunc,ts,pointsInImpulse);
Evaluate Differential-Mode Frequency Response

Plot the magnitude and phase of the original transfer function and the output of rationalfit.

freqsforresp = linspace(0,max(freq)*2,length(freq))"';
resp = freqresp(rationalfunc,freqsforresp);

figure(11)

subplot(2,1,1)

plot(freg*l.e-9,20*logl0O(abs(difftransfunc)),'r',freqsforresp*l.e-9,
20*1oglO(abs(resp)), 'b--', 'LineWidth"',2)

title(sprintf('Rational Fitting with %d poles',npoles), 'FontSize',12)

ylabel('Magnitude (decibels)")

xlabel('Frequency (GHz)")

legend('Original data','Fitting result')

subplot(2,1,2)

origangle = unwrap(angle(difftransfunc))*180/pi+360*freg*rationalfunc.Delay;

plotangle = unwrap(angle(resp))*180/pi+360*freqsforresp*rationalfunc.Delay;

plot(freq*l.e-9,origangle, 'r',freqsforresp*l.e-9,plotangle, 'b--", ...
'LineWidth',2)

ylabel('Detrended phase (deg.)")

xlabel('Frequency (GHz)")

legend('Original data','Fitting result')

Convert Scattering Parameter to Impulse Response for SerDes System

Rational Fitting with 120 poles

I:l T T T T
W Crriginal data
E = = = Fitting result
o -20r -
=
a
]
240+ b
=
L3)
=
-60 & L L L -~ , T rT=m=e- E
0 10 20 30 40 50 B0 70 &0 an
Frequency (GHz)
f"‘_'\- I:l T T T T T T T T
T Crriginal data
= = = = Fitting result
Pl
(5]
2
o -5000 b
s
=)
=
i
E o am em omm e e e omm owm omm omw
D '1DDUD i i i i i i i i
] 10 20 30 40 50 B0 70 &0 a0

Frequency (GHz)

Convert Transfer Function to Impulse Response and Plot for Evaluation

Use the transfer function from rationalfit to find the impulse response using impulse.

[imp,impt]=impulse(rationalfunc,ts,pointsInImpulse);
plot(impt,imp);

4-9

4 Design and Simulate SerDes Systems Examples

Rational Fitting with 120 poles

Criginal data
= = = Fitting result

()
=
T

=
=
T

Magnitude (decibels)

. st eiraldie wle

&
=
T

=

10 20 30 40 50 &0 7o 80
Frequency (GHz)

1':" T T T T T

See Also
SerDes Designer

4-10

Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

Globally Adapt Receiver Components Using Pulse Response
Metrics to Improve SerDes Performance

This example shows how to perform optimization of a set of receiver components as a system using
function optPulseMetric to calculate metrics such as eye height, width and channel operating
margin (COM) estimate from a pulse response at a target bit error rate (BER) to evaluate the optimal
performance of a particular configuration. The adaptation is performed as statistical analysis (Init),
then the optimized result is passed to time-domain (GetWave).

Initialize SerDes System with Multiple CTLEs and DFECDR

This example uses the SerDes Designer model rx ctle adapt dfe train as a starting point. Type
the following command in the MATLAB® command window to open the model:

>> serdesDesigner('rx _ctle adapt dfe train.mat')

Tx Rx
| | DFE/
'—‘ D. Channel | CTLE CTLE CDR
AnalogOut Channel Analogln CTLE Lo... CTLE_Hig... DFECDR

This project contains a receiver section with two CTLE blocks followed by a DFECDR block. In their
default configuration, these blocks optimize individually. The goal of this example is to optimize the
blocks as a system.

For the CTLE LowFreq block, the Peaking frequency (GHz) is set to [10 11 12 13 14 15 16],
the DC gain (dB) issetto [0 0 @ 0 0 O O], and the Peaking gain (dB) is set to 0. All other
parameters are kept at their default values.

For the CTLE HighFreq block, the Specification is set to DC Gain and AC Gain, the Peaking
frequency (GHz) is set to 14, the DC gain (dB) is set to 0, and the AC gain (dB) issetto [0 1 2
34567 89 10 11 12 13 14 15]. All other parameters are kept at their default values.

For the DFECDR block, the Initial tap weights (V) issetto [0 0 0 0 0 0 0 0 O O]. All other
parameters are kept at their default values.

Export the SerDes system to a Simulink® model.
Add Code to Optimize CTLEs and DFECDR as System

Double click the Init subsystem inside the Rx block and click on the Show Init button. Copy the
complete code listed at the end of this example inside the Custom user code area. Save the model.
The code is broken down below in several subsections for easy comprehension.

Note: To complete the example, you must place the following code sections together in the Custom
user code area inside the Init subsystem. A complete set of code is provided at the end of this
example. For more information about Init subsystem, see “Statistical Analysis in SerDes Systems” on
page 1-18.

4-11

4 Design and Simulate SerDes Systems Examples

Initialize Receiver Parameters

The first section of the Custom user code area checks if both CTLEs are in adapt mode and
instantiating variables to hold temporary values and the best configuration metrics.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
% If both CTLEs are in Adapt mode, use global adaptation
if CTLE LowFregParameter.Mode == 2 && CTLE HighFreqParameter.Mode ==

CTLE LowFregInitBestConfig = 0;

CTLE HighFregInitBestConfig = 0;

bestMetric = 0;

SPB = SymbolTime/SampleInterval;

Sweep CTLE Parameters

The example code sets the CTLE.Mode parameter from adapt to fixed to allow algorithmic control
of the values for each block. In this case the values are directly swept and the blocks are called to
process the impulse response.

CTLE LowFreqInit.Mode = 1;

CTLE_HighFregInit.Mode = 1;

for CTLE LowFreqInitSweep = 0:1:6

for CTLE_HighFreqInitSweep = 0:1:15

% Set current sweep configs on each CTLE
CTLE LowFreqInit.ConfigSelect = CTLE LowFreqInitSweep;
CTLE_HighFreqInit.ConfigSelect = CTLE HighFreqInitSweep;
% Call CTLEs and DFE
[sweepImpulse, ~] CTLE LowFreqInit(LocalImpulse);
[sweepImpulse, ~] CTLE_HighFreqInit(sweepImpulse);
[sweepImpulse, ~, ~, ~, ~] = DFECDRInit(sweepImpulse);

1

Convert Impulse Response to Pulse Response and Evaluate with optPulseMetric

Convert the impulse response to a pulse response for evaluation by function optPulseMetric. A
pulse response lends itself to metrics-based evaluation more readily than an impulse response. The
optPulseMetric function is used to optimize the SerDes system as a whole. Many metrics are
reported by this function and you can use an algorithm to evaluate multiple receiver components
together as a system.

% Convert impulse after DFE to pulse then calculate eye metrics
sweepPulse = impulse2pulse(sweepImpulse,SPB,SampleInterval);
eyeMetric = optPulseMetric(sweepPulse,SPB,Samplelnterval,le-6);
% Select eye metric to evaluate results

sweepMetric = eyeMetric.maxMeanEyeHeight;

% sweepMetric = eyeMetric.eyeHeightMax;

% sweepMetric = eyeMetric.COMMax;

% sweepMetric = eyeMetric.meanHeightCenter;
% sweepMetric = eyeMetric.eyeHeightCenter;
% sweepMetric = eyeMetric.COMCenter;

Evaluate optPulseMetric Results

Save the CTLE configurations based on comparison to previous results. The final best configurations
are saved on the blocks for a final statistical (Init) analysis and then passed to time-domain (GetWave)
simulation.

% If current sweep metric is better than previous, save the CTLE configs
if sweepMetric > bestMetric

4-12

Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

end

bestMetric = sweepMetric;
CTLE LowFreqInitBestConfig = CTLE LowFregqInitSweep;
CTLE HighFreqInitBestConfig = CTLE HighFregqInitSweep;
end
end

end

% Set CTLEs to best configs from sweep

CTLE LowFreqInit.ConfigSelect = CTLE LowFreqInitBestConfig;

CTLE HighFreqInit.ConfigSelect = CTLE HighFreqInitBestConfig;

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Run

Run

SerDes System

the SerDes system and observe the optimizing behavior. You can try changing which metric is

evaluated to perform different optimizations.

4

Eile

Dode @ 08|k E

Init Statistical Analysis Results — O x

Edit View Inset Tools Desktop Window Help k]

Pulse Response Statistical Eye a
15 10
Unequalized pu[t]
i Equalized pD[t] 10_5 =
S 2
=05 o
100 oo
0
10718
0 1 2 3
(s] x 108 [ps]
Wa'.;efarm Derived from Pulse Response
1 Unequalized p, 1) Mame Data
. Eye Height U... 0.34 &
05 ‘ Equalized pt) 1 _Fyehed
2 |Eye Height C... 0.34
= 4 |‘ 3 |Eye Height L... 0.34
- J " 4 |Eve Width U... 1158
05 . ‘ I m 5 |Eve Width C... 12.88
' ' ‘ _ § |Eye Width Lo... 1159 ¥
1 < >
0 1 2 3 4
[s] x107®

4-13

4 Design and Simulate SerDes Systems Examples

4. Eye Diagram — O >

Eile Tools VWiew Help u

@- 5 OP® - a5 B -

Ready T=7.14e-08

Complete Code

Copy-paste the following code within the Custom user code area inside the Init subsystem of the

receiver.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% If both CTLEs are in Adapt mode, use global adaptation
if CTLE LowFregParameter.Mode == 2 && CTLE HighFreqParameter.Mode == 2
CTLE LowFreqInitBestConfig = 0;
CTLE HighFregInitBestConfig = 0;
bestMetric = 0;
SPB = SymbolTime/SampleInterval;
CTLE LowFreqInit.Mode = 1;
CTLE _HighFregInit.Mode = 1;
for CTLE LowFreqInitSweep = 0:1:6
for CTLE HighFreqInitSweep = 0:1:15
% Set current sweep configs on each CTLE
CTLE LowFreqInit.ConfigSelect = CTLE LowFreqInitSweep;
CTLE _HighFreqInit.ConfigSelect = CTLE HighFreqInitSweep;
% Call CTLEs and DFE
[sweepImpulse, ~] = CTLE LowFregInit(LocalImpulse);
[sweepImpulse, ~] = CTLE HighFregInit(sweepImpulse);
[sweepImpulse, ~, ~, ~, ~] = DFECDRInit(sweepImpulse);

% Convert impulse after DFE to pulse then calculate eye metrics

sweepPulse = impulse2pulse(sweepImpulse,SPB,SampleInterval);

eyeMetric = optPulseMetric(sweepPulse,SPB,Samplelnterval,le-6);

% Select eye metric to evaluate results
sweepMetric = eyeMetric.maxMeanEyeHeight;
sweepMetric eyeMetric.eyeHeightMax;

sweepMetric eyeMetric.COMMax;

o® o°
1l

4-14

Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

% sweepMetric = eyeMetric.meanHeightCenter;
% sweepMetric = eyeMetric.eyeHeightCenter;
% sweepMetric = eyeMetric.COMCenter;

If current sweep metric is better than previous, save the CTLE configs
if sweepMetric > bestMetric
bestMetric = sweepMetric;
CTLE LowFreqInitBestConfig = CTLE LowFregqInitSweep;
CTLE HighFreqInitBestConfig = CTLE HighFregqInitSweep;
end
end
end
% Set CTLEs to best configs from sweep
CTLE LowFreqInit.ConfigSelect = CTLE LowFreqInitBestConfig;
CTLE HighFreqInit.ConfigSelect = CTLE HighFreqInitBestConfig;
end
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

See Also
CTLE | DFECDR | optPulseMetric

More About

. “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 4-2
. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-20
. “Statistical Analysis in SerDes Systems” on page 1-18

4-15

Customize SerDes Systems

* “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2
* “Customizing Datapath Building Blocks” on page 5-11
* “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-20

5 customize SerDes Systems

Customizing SerDes Toolbox Datapath Control Signals

This example shows how to customize the control signals in a SerDes system datapath by adding new
custom AMI parameters and using MATLAB® function blocks. This allows you to customize existing
control parameters without modifying the built-in blocks in the SerDes Toolbox™ library.

This example shows how to add a new AMI parameter to control the operation of the three
transmitter taps used by the FFE block. The custom AMI parameter simultaneously sets all three taps
to one of the ten values defined by the PCle4 specification or allows you to enter three custom
floating-point tap values. To know more about how to define a PCle4 transmitter model, see “PCle4
Transmitter/Receiver IBIS-AMI Model” on page 7-2.

PCled Transfer Model

The transmitter model in this example complies with the PCIe4 specification. The receiver is a simple
pass-through model. A PCle4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with
one pre-tap and one post-tap, and ten presets.

Open the model adding tx ffe params. The SerDes system Simulink® model consists of
Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

open_system('adding tx ffe params.slx')

Configuration

——#{Waveln Tx WaveOut f————®{Waveln Analog Channel WaveOut] Waveln R WavaOut
-

h i

Eye Diagram

* The Tx subsystem contains an FFE block to model the time-domain portion of the AMI model and
an Init block to model the statistical portion.

* The Analog Channel block has the PCle4 parameter values for Target frequency, Loss,
Impedance and Tx/Rx analog model parameters.

* The Rx subsystem has a Pass-Through block and an Init block.
Add New AMI Parameter

Add a new AMI parameter to the transmitter which is available to both the Init and GetWave datapath
blocks and functions. The parameter is also included in the Tx IBIS-AMI file.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button. Go to the AMI-Tx tab of the SerDeS IBIS-AMI Manager dialog
box.

» Select the FFE parameter, then click Add Parameter... to add a new FFE sub-parameter.

* Set the Parameter name to ConfigSelect.

* Keep the Current value as 0.

5-2

Customizing SerDes Toolbox Datapath Control Signals

* In the Description, add Pre/Main/Post tap configuration selector.
* Keep the Usage as In.

* Set the Type to Integer.

* Set the Format to List.

* Under the List Format details, set Default to 0.

* SetListvaluesto[-1 0 1 2 3456 7 8 9]

* Set List_Tip values to ["User Defined" "P0" "P1" "P2" "P3" "P4" "P5" "Po6" "P7"
n P8 n n P9 n]

A new parameter ConfigSelect* is added to the AMI-Tx tab.
Modify Init

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the newly
added ConfigSelect*parameter. The ConfigSelect* parameter controls the existing three
transmitter taps. To accomplish this, add a switch statement that takes in the values of
ConfigSelect* and automatically sets the values for all three Tx taps, ignoring the user defined
values for each tap. If a ConfigSelect value of -1 is used, then the user-defined Tx tap values are
passed through to the FFE datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog box and click
the Refresh Init button to propagate the new AMI parameter to the Initialize sub-system.

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize block to open
the Initialize Function.

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the

5-3

5 customize SerDes Systems

SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
FFEParameter.ConfigSelect; % User added AMI parameter
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area, comment out
the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
%sFFEParameter.ConfigSelect; % User added AMI parameter
switch FFEParameter.ConfigSelect

case -1 % User defined tap weights

FFEInit.TapWeights = FFEParameter.TapWeights;

case 0 % PCIe Configuration: PO

FFEInit.TapWeights = [0.000 0.750 -0.250];

case 1 % PCIe Configuration: P1

FFEInit.TapWeights = [0.000 0.830 -0.167];

case 2 % PCIe Configuration: P2

FFEInit.TapWeights = [0.000 0.800 -0.200];

case 3 % PCIe Configuration: P3

FFEInit.TapWeights = [0.000 0.875 -0.125];

case 4 % PCIe Configuration: P4

FFEInit.TapWeights = [0.000 1.000 0.000];

case 5 % PCIe Configuration: P5

FFEInit.TapWeights = [-0.100 0.900 0.000];

case 6 % PCIe Configuration: P6

FFEInit.TapWeights = [-0.125 0.875 0.000];

case 7 % PCIe Configuration: P7

FFEInit.TapWeights = [-0.100 0.700 -0.200];

case 8 % PCIe Configuration: P8

FFEInit.TapWeights = [-0.125 0.750 -0.125];

case 9 % PCIe Configuration: P9

FFEInit.TapWeights = [-0.166 0.834 0.000];

otherwise

FFEInit.TapWeights = FFEParameter.TapWeights;

end

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200.

Run the simulation and observe the results of Init statistical analysis.

Customizing SerDes Toolbox Datapath Control Signals

4\ Init Statistical Analysis Results

File Edit View Inset Toocls Desktop Window Help

Odde | @ 0&8| K [E

Pulse Response

Un-equalized
Equalized
— 0.5
=
0 T,‘
0 0.5 1
(5] x1078 [ps]
Waveform Derived from Pulse Response
| | Marme Data
Un-equalized
Equalized 1 |Eve Height (... 365.4359
2 |Eye Width (ps) 576172

0 2 4 G
(5] x10%8

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000.

Run the simulation and observe the results of Init statistical analysis.

3-5

5 customize SerDes Systems

|
| File Edit View Insert Tools Desktop Window Help e

NEde (G 0E |~ E

Pulse Response Statistical Eye

! 107!
Un-equalized 0.5
Equalized
:{J.E E 0 102
0 JL{- 0.5 .
0 0.5 1 0 20 40 &0 10
(5] x1078 [ps]
Waveform Derived from Pulse Response
Un-cqualiz Marme Data
Equalized 1 |Eve Height (... B65.3464

‘ 2 |Eye Width (ps) 62.0117

LI 2 4 G
(5] x10%8

Try different values of ConfigSelect* to verify proper operation. The statistical eye opens and closes
based on the amount of equalization applied by the FFE. How much the eye changes, and the tap
values that create the most open eye varies based on the loss defined in the Analog Channel block.

Modify GetWave

To modify GetWave, add a new MATLAB function that operates in the same manner as the Initialize
function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

Customizing SerDes Toolbox Datapath Control Signals

FFEParameter.Mode

A 4

Mode

FFEMode

3

FFEParameter.TapWeights

nf

FFETapWeights

TapWeights

Wy

FFE Out

(D

FFEParameter.ConfigSelect.

configurations.

Inputs:

-1:
Outputs:

0° 0% o° 0% 0% O° ° O° O° o° o°

function TapWeightsOu

switch ConfigSelect

PCIe4 tap configuration selector
Selects pre-defined Tx FFE tap weights based on PCIe4 specified

FFE

Add a Constant block to the canvas from the Simulink/Sources library.
Rename the Constant block as FFEConfigSelect and set the Constant value to

Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.
Rename the MATLAB Function block to PCIe4FFEconfig.
Double-click the MATLAB Function block and replace the template code with the following:

TapWeightsIn: User defined floating point tap weight values.
ConfigSelect: 0-9: PCIe4 defined configuration (P0-P9).

User defined configuration (from TapWeightsIn).

t

case -1 % User defined tap weights
TapWeightsOut = TapWeightsIn;
case 0 % PCIe Configuration: PO
TapWeightsOut = [0.000 0.750 -0.250];
case 1 % PCIe Configuration: P1
TapWeightsOut = [0.000 0.833 -0.167];
case 2 % PCIe Configuration: P2
TapWeightsOut = [0.000 0.800 -0.200];
case 3 % PCIe Configuration: P3
TapWeightsOut = [0.000 0.875 -0.125];
case 4 % PCIe Configuration: P4
TapWeightsOut = [0.000 1.000 0.000];
case 5 % PCIe Configuration: P5
TapWeightsOut = [-0.100 0.900 0.000];
case 6 % PCIe Configuration: P6
TapWeightsOut = [-0.125 0.875 0.000];
case 7 % PCIe Configuration: P7
TapWeightsOut = [-0.100 0.700 -0.200];
case 8 % PCIe Configuration: P8
TapWeightsOut = [-0.125 0.750 -0.125];

TapWeightsOut: Array of tap weights to be used.

PCIe4FFEconfig(TapWeightsIn, ConfigSelect)

5-7

5 customize SerDes Systems

case 9 % PCIe Configuration: P9
TapWeightsOut = [-0.166 0.834 0.000];
otherwise
TapWeightsOut = TapWeightsIn;
end

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant blocks connect
to the inputs of the newly defined PCle4FFEconfig MATLAB function block. The TapWeightsOut signal
from the PCle4FFEconfig block connects to the TapWeights port of the FFE block.

D1
Qo > In
D1
Mo ouf® D)
3 B T [5
—— | TapWeightsin 2 TapWeights
TapWeightsOut FFE

PCled4FFEconfig

FFEParameter.ConfigSelect l—b ConfigSelect

FFEConfigSelect

PCled4FFEconfig

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-AMI Manager
dialog box from the Configuration block. In the AMI-Tx tab, edit the ConfigSelect* parameter to set
Current value to P7. This corresponds to PCle Configuration P7: Pre = -0.100, Main = 0.700 and
Post = -0.200. Observe the output waveform.

4. Eye Diagram — O *
File Tools View Help u
@- =2/ 0OP® | - q- K H- Lk

pE
o
=

E
L

Rea

Customizing SerDes Toolbox Datapath Control Signals

Next, set the Current value of the ConfigSelect* parameter to User Defined. This corresponds to
user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000. Observe how the output
waveform changes.

i

File Tools View Help ¥
@- a2/ 0P ®| - a-|CH-|Ld- s

i)
=
EL
E
T
™
n
&

Ready T=2e-07

Try different values of ConfigSelect* to verify proper operation. The time-domain eye opens and
closes based on the amount of equalization applied by the FFE. How much the eye changes, and the
tap values that create the most open eye varies based on the loss defined in the Analog Channel
block.

Export the Tx IBIS-AMI Model

Verify that both Init and GetWave are behaving as expected, then generate the final IBIS-AMI
compliant PCIe4 model executables, IBIS and AMI files.

Double-click the Configuration block to open the Block Parameters dialog box. Click the Open
SerDes IBIS-AMI Manager button, then select the Export tab:
* Update the Tx model name to pcie4 tx.

+ Tx and Rx corner percentage is set to 10. This will scale the min/max analog model corner
values by +/-10%.

* Verify that Dual model is selected as Model Type for the Tx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore parameter to 3 since there are three taps in the Tx FFE.
* Set the Models to export to Tx only.
* Set the IBIS file name (.ibs) to pcie4 tx serdes.ibs

5-9

5 customize SerDes Systems

* Click the Export button to generate models in the Target directory.
Test Generated IBIS-AMI Model

The PCle4 transmitter IBIS-AMI model is now complete and ready to be tested in any industry
standard AMI model simulator.

References

PCI-SIG.

See Also
FFE | PassThrough | SerDes Designer

More About
. “Managing AMI Parameters” on page 6-2
. “PCle4 Transmitter/Receiver IBIS-AMI Model” on page 7-2

5-10

https://pcisig.com

Customizing Datapath Building Blocks

Customizing Datapath Building Blocks

This example shows how to customize a PassThrough block in Simulink® using other Simulink library
blocks. This example shows the implementation of a receiver gain or attenuation stage controlled by
an IBIS-AMI parameter. You can also use this example as a guide to modify PassThrough blocks to
implement custom functions for a SerDes system.

PassThrough Block Function and Use

By default, PassThrough block is, as the name implies, a block that passes the input impulse or
waveform to the output with no modifications. This block can be used as a floor planning tool in the
SerDes Designer App and then customized after exporting to Simulink. Under the mask of a
PassThrough block is a MATLAB® System block referencing the serdes.PassThrough System object™,
which when called by Simulink forwards the input to the output. The MATLAB System block can be
updated to reference other SerDes System objects or can be replaced with other Simulink blocks as
this example outlines. For an example of customizing with System objects, see “Implement Custom
CTLE in SerDes Toolbox PassThrough Block” on page 5-20.

Create SerDes System in SerDes Designer App

Launch the SerDes Designer app. Place a PassThrough block after the analog model of the receiver.
Change the name of the PassThrough block from PT to CustomExample.

4\ SerDes Designer - untitied” -] >
seossoeson: -~

LA 1 H Symbol Time (ps) | 100 Medulation NRZ - |AGE | (FFE) ﬁ Eﬁi_. Ariehize L " d
16 - = > '
MNew ©Open Save Smnples pecVRIEols Signaling |Diff T AGC FFE Delete Add Plots LAYOUT Export
- Target BER | 1e-06 tgnaling e = Auto-Analyze &
FILE CONFIGURATION BLOCKS ANALYSIS h EXPORT
SerDes System
Tx Rx
‘ Pass-
— D [Channel == D | Threugh
AR |) | [—
AnalogOut Channel Analogin CustomEx
|. Block Parameters '_ Plots
2! L |
CustomExample (Pass Through)
L CustomExample|

Export the SerDes system to Simulink.

5-11

5 customize SerDes Systems

®, untitled * - Simulink prerelease use - a X
SIMULATION MODELING FORMAT 5 SUBSYSTEM BLOCK
~L [T Open ~ 5]] Stop Time i-Ee—OT | () =
LlJl:‘ H - [C]s] > ™ E % | qg '~£J I][) = @
- 3 * || N I - -

New OB °€ Library) Signal e Step Run Step Data

v S Print v Browser als : Table UG Fast Restart Back» v Forward Inspecter

FILE LIBRARY PREPARE i SIMULATE REVIEW RESULTS a
untitled

@ |[Pajuntitied » i
@

= Configuration

=]

B

]

_.l ==l
Stimuius WaveOut] Waveln Tx WaveOut Waveln Analog Channel WaveOut Wanvetn R WaveOul h:

ﬁ Eye Diagram

.-_

» = |

Ready Q5% FixedStepDiscrete

Add AMI Parameter to Control Gain

Double click on the Rx block to look inside the Rx subsystem and open the SerDes IBIS-AMI Manager
dialog box.

P34 untitled/Rx * - Simulink prerelease use

SIMULATION DEBUG MODELING

., MiOpen ~ (W — Stop Time | 207 | — = -

sl - @ 5 g s T S S I %

New o8 2 Library Log Signal Nomal %] Gep Run Step Stop Data

v & Pint v | Browser = : Table 6@ Fast Restart Back + Forward Inspector

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS a

. i+ Rx

® |[Pauntitied b [PaRx -
Cl

3

Init

= SerDes IBIS-AMI er

1]

[

7] [ERD Waveln Pass-Through WaveOut 4@

&] Wavealn WaveOut

» | & CustomExample

Ready 115% FixedStepDiscrete

5-12

Customizing Datapath Building Blocks

In the AMI-Rx tab, select the CustomExample node. Click on the Add Parameter button and set
the variables:

* Parameter name to ExampleGain

* Description to Gain setting for Receiver

* Format to Range

 Typto0.8
* Minto0
e Maxtol.

Current value, Usage, and Type are kept at their default values 0, In, and Float, respectively.
Add Gain Block to PassThrough

To configure the time-domain portion of the model, a Gain block is added within the PassThrough
block. Look under the mask of the PassThrough block. Delete the MATLAB System block that points
to the serdes.PassThrough System Object. Add a Gain block from the Simulink > MathOperators
library and connect the Gain block between the input and output ports.

P4 untitled/Rx/CustomExample * - Simulink prerelease use - a X
SIMULATION MODELING

AL [Tl Open ~ (i Stop Time | 20.07) =
O Hs BO N ¢ & : d @ b 2
New e Library E Signal ool Step Run Step t Data

v = Print * Browser Table o@ Fast Restart Back - - Forward Inspector

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS Y
=] 4 CustomBExample
T . = 1

* 3ﬂjunulleﬂ b [PajRx b [Ba|CustomExample v
C
3

| @r—i Ini Pass Through Out —ﬁ@

J - PassThrough

]
o

b]
Ready 100% FixedStepDiscrete

5-13

5 customize SerDes Systems

P4 untitled/Rx/CustomExample * - Simulink prerelease use - (m] X
SIMULATION DEBUG MODELING
i1 Open v [FW = Stop Time (2007 | G = :

E"'bﬁi-is = >) _ == '<1& & b y }

New - i Library Lo Signal CICATIEE Step Run Step Stop Data

~ EHPrint v Browser I3 € Table o Fast Restart Back ~ - Forward Inspector

FILE LIERARY PREPARE SIMULATE REVIEW RESULTS ry

B 4 CustomExample

® |[Pauntitied b [PaRx b [Pa|CustomExample v
£

B

Jiex]

O

7]

» ||

Ready 100% FixedStepDiscrete

Connect Block Parameters of Gain Block to Added AMI Parameter

Constants are represented as Simulink parameters. Double click the Gain block to open the Block
Parameters dialog box. Set Gain value to CustomExampleParameter.ExampleGain.

("al Block Parameters: Gain X
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).

Main Signal Attributes Parameter Attributes
Gain:

| CustomExampleParameter. ExampleGain

Multiplication: | Element-wise(K.*u) i

9 Cancel Hep | | Apply

5-14

Customizing Datapath Building Blocks

Update Code that Runs During Statistical Analysis

To enable the gain to be applied to the impulse response during statistical analysis, double click the
Init block inside the Rx subsystem. Click the Refresh Init button to add the new AMI parameter to
the Init code. Click the Show Init button to open the MATLAB editor window and look for the
Custom user code area surrounded by %%BEGIN and %END comments. Your code associated with
the customized PassThrough block is encapsulated in this section.

% BEGIN: Custom mser code area (retained when 'Refresh Init' buntton is pressed)

CustomExampleParameter .ExampleGain: % User added AMI parameter from SerDes IBIS-AMTI Manager

% EHND:

Custom user code area (retained when '"Befresh Imit' button is pressed)

Implement Gain

In the Custom user code area, edit your customized code to perform a Gain operation on the local
variable containing the Impulse Response. To do this, replace the code
CustomExampleParameter.ExampleGain with LocalImpulse =
LocalImpulse*CustomExampleParameter.ExampleGain. Save the changes.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
LocalImpulse = LocalImpulse*CustomExampleParameter.ExampleGain; % User added AMI parameter from SerDes IBIS-AMI Manager

% END:

Custom user code area (retained when 'Refresh Init' button is pressed)

Note: If Init code is not modified, results from the Statistical simulation does not reflect the gain
operation and is only shown in the results from the Time-Domain (GetWave) simulation.

Run Simulation with Gain Setting

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0. 8.

Run the simulation and observe amplitude of the waveform from Time-Domain (GetWave) and the
waveform from Statistical (Init) results.

5-15

5 customize SerDes Systems

4. Eye Diagram
File Tools View Help

-l ®k - Q-3 H-| -

|
=
E
=
L]
o
o

5-16

Customizing Datapath Building Blocks

4| Init Statistical Analysis Results — O *
File Edit View Inset Tools Desktop Window Help u
Ndde | @(0E RE
Pulse Response Statistical Eye
06 0.4 10°
Unequalized pa[t]
Equalized pa[t] -
0.4 £
— a
< g
=
02 o
o4 .
0 1 2 3 4 0 50 100
(s] x108 [ps]
Wﬂefnrm Derived from Pulse Response
'] [Unequalized p, 1] Na_me | Data
’ Equalized p(1) 1_[Eye Height (v) 0.2442
] 2 |Eye Width (ps) 726030
T g 3 |[Eve Area (V.. 11.7931
= 4 |com 59600
5 |WEC 6.0816
-0.5
0 0.5 1 1.5

(5] x10%8

Change Gain Setting and Observe Change

Open the SerDes IBIS-AMI Manager dialog box and click on the AMI-Rx tab. Select the
ExampleGain* node and set the Current value to 0. 4.

Run the simulation again and observe how the amplitude changes for both the waveform from Time-
Domain (GetWave) and the waveform from Statistical (Init).

5-17

5 customize SerDes Systems

4. Eye Diagram

File Tools View Help

-l ®k - Q-3 H-| -

1
|
=

E
=
L]

o
o

5-18

Customizing Datapath Building Blocks

4| Init Statistical Analysis Results — O *
File Edit View Inset Tools Desktop Window Help u
Pulse Response Statistical Eye a
06 1 10
Unequalized pa[t]
Equalized pa[t] -
0.4 £
— a
< 3
=
02 o
0 0.
0 1 2 3 4 0 50 100
(s] x108 [ps]
Wﬂeform Derived from Pulse Response
|1 Unequalized p, 1] Na_me | Data
' Equalized p(1) 1_[Eye Height (v) 0.1221
3 |Eye Width (ps) 726030
T g 3 |[Eve Area (V.. 5.899
= 4 |com 59600
5 [WVEC 6.0816
-0.5
0 0.5 1 1.5
(5] x1078
See Also

Configuration | PassThrough | SerDes Designer

More About
. “Implement Custom CTLE in SerDes Toolbox PassThrough Block” on page 5-20

5-19

5 customize SerDes Systems

Implement Custom CTLE in SerDes Toolbox PassThrough Block

This example shows how to customize a PassThrough Block in Simulink® to implement a CTLE
System Object™ with user defined AMI parameters. You can use this example as a guide for
modifying PassThrough blocks that leverage system objects. For more information on the purpose of
the PassThrough block and an example of using other Simulink library blocks within them, see
“Customizing Datapath Building Blocks” on page 5-11.

Create SerDes System in SerDes Designer App

In MATLAB®, type serdesDesigner to launch the SerDes Designer app. Place a PassThrough block
after the analog model in the receiver. Change the name of the PassThrough block from PT to
MyCTLE.

4 SerDes Designer - untitled” —_ O b4
[ososce [O

LA _" H Symbel Time (ps) [100 Modulation |NRZ - AL | EJ ﬁ Er‘ Analyze V
Samples per Symbol |16 > x: ' Fas
MNew Open Save e - = AGC FFE Delete Add Plots LAYOUT | Export
P = Target BER | 1e-06 Signaling Differential ~ = Auto-Analyze Pv
-
FILE CONFIGURATION BLOCKS AMALYSIS EXPORT .
SerDes System
Tx Rx
*~— == Channel ‘] Pass.
| [| | J Through
| J 1L
AnalogOut Channel Analogin MyCTLE
| Block Parameters | Plots
Name:

Export the SerDes system to Simulink.

5-20

Implement Custom CTLE in SerDes Toolbox PassThrough Block

Pl untitled * - Simulink prerelease use - O X

SIMULATION DEBUG MODELING
JL [C1Open ~ (i = Stop Time | 2e-07 <1E (> HD = 3
= Hs W . { = & A

e - | * | Normal -

New " Library S’Q”"‘ il Step Run Step Data

* = Print * Browser C Table 0§ Fast Restart Back = - Forward Inspector

g BRARY PREPARE SIMULATE REVIEW RESULTS Y
untitied

® :@mm(leﬂ » -
CH
£l
= Configuration
=]
7]

o Sumulus WavaOut vein T= WanvmOiat —.lwa-velr. Aralog Channel WanveOut Rx WaveOut @

= la

Lm wE

Eye Diagram

-]

b i
Ready B86% FixedStepDiscrete

Modify PassThrough Block to Implement CTLE

This example builds a custom replica of the CTLE bloc from SerDes Toolbox™. First modify the
contents of PassThrough block to reference a new system object and then implement and connect its
parameters. This addresses the time-domain (GetWave) function of the model. The Init code is then
updated to mirror the functionality of time-domain (GetWave) in the statistical analysis. This example
walks you through the whole process using serdes.CTLE System object.

Inside the Rx subsystem, look under mask of PassThrough block MyCTLE. Select the PassThrough
block, press Ctrl+U to open the Block Parameters dialog box of the MATLAB System, and change the
System object name from serdes.PassThrough to serdes.CTLE.

5-21

5 customize SerDes Systems

’i untitled/Rx/MyCTLE * - Simulink prerelease use

MODELING FORMAT

SIMULATION

[Open ~ [Stop Time | 2e-07 -~
GO g 5, b g @ b | &
- - - -
MNew Ve Library _ag orma Step Run Step Stop Data
- é Print + Browser 2lgnais E@ Fast Restart Back « - Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS ry
@ e woe
[Pa| unttied » [Pa|Rx » [Fa]MyCTLE -
&
(& Block Parameters: PassThrough *
= MATLAB System
Implement block using a System object. Specify the
class name.
(0 }—fn PassTrrough out—w(1)
O PassThrough System object name: | berdes.CTLE v| =
If:,] New |v
&
. concl ||l
» |8
Ready 100% FixedStepDiscrete
Click OK to save the changes.
P untitled/R/MyCTLE * - Simulink prerelease use - m} X
SIMULATION DEBUG MODELING FORMAT
. 1 Cpen ~ s = Stop Time | 28-07 = i
P g ! ! sopTme (2007 | @i @ D (= %
New ™ e Library Signal =|| Nommal I Step Run Step Dat
- a Print + Browser Table ogd Fast Restart Back = - Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS ry
@ e
@ |[Paluntitied & [Pa|Rx b [Pa|MyCTLE v
«Q
£
B G r—o>
L ouf——(CD)
= Mode CTLE
3 ConfigSeloct ConfigSelect [p
|J PassThrough
)
» ||=
Ready 100% FixedStepDiscrete

5-22

Implement Custom CTLE in SerDes Toolbox PassThrough Block

Note: You can use your own custom System object as well. For example, if you wanted to create a
custom CTLE with a change in the adaptation algorithm:

Open the source code of serdes.CTLE.

Save a local copy of the source code in a directory.

Make the desired changes in the code.

A W N

Then reference the customized code with the MATLAB System.

To properly link the CTLE to the system-wide parameters SymbolTime and SampleInterval, you
need to set the CTLE to use these parameters as variables rather than hard-coded values. Otherwise
incorrect or unexpected values may be included in the simulation and result in invalid data. Double
click the PassThrough block that now points to the CTLE system object to open the Block parameters
dialog window. In the Advanced tab, set Symbol time (s) to SymbolTime and Sample interval (s)
to SampleInterval. Click OK to save the changes.

Add AMI Parameters to PassThrough Block

Open the SerDes IBIS-AMI Manager dialog box. Under the Model Specific parameters in the
AMI-Rx tab, select the MyCTLE node and add two new parameters, CTLEMode and
CTLEConfigSelect.

To add CTLEMode parameter, click on the Add Parameter button and set the variables:

* Parameter name to CTLEMode

* Current value to 0

* Description to CTLE Mode: 0 = off, 1 = fixed, 2 = adapt
* Type to Integer

+ Format to Range

 Typtol

* Minto0

* Maxto 2.

Save the changes.

To add CTLEConfigSelect parameter, select the MyCTLE node again, click on the Add Parameter
button and set the variables:

* Parameter name to CTLEConfigSelect

* Current value to 0

* Description to CTLE Config Select has a range from 0 to 8
* Usage to InOut

* Type to Integer

+ Format to Range

 TyptoO

* Minto0

* Max to 8.

Save the changes and close the SerDes IBIS-AMI Manager dialog box.

5-23

5 customize SerDes Systems

Implement AMI Parameters

Look under the mask of the PassThrough Block. Add a Constant block from the Simulink > Sources
library on the canvas. Double click the Constant block to open the Block Parameters dialog box and
set the Constant value to MyCTLEParameter.CTLEMode. Connect the Constant block to the Mode
input of the PassThrough block. For more information, see “Managing AMI Parameters” on page 6-
2.

Add a Data Store Read block from the Simulink > Signal Routing library on the canvas. Double
click the Data Store Read block to open the Block Parameters dialog box. In the Parameters tab, set
Data store name to MyCTLESignal. In the Element Selection tab, expand MyCTLESignal, select
CTLEConfigSelect, and press the Select >> button to add the selected element. Connect the Data
Store Read block to the ConfigSelect input of the PassThrough block.

m Block Parameters: Data Store Read =
DataStoreRead
Read values from the specified data store. Use the 'Element Selection' tab to select specific elements to read. If you

do not select any elements, the entire data store is read.

Parameters Element Selection

Signals in the bus Selected element(s) Up
| ¥ MyCTLESignal 'MyCTLESignal. CTLEConfigSelect |
CTLEConfigSelect '
Refresh Remove

Specify element(s) to select:

| MyCTLESignal.CTLEConfigSelect | Select>>

J Cancel Help Apply

Add a Data Store Write block from the Simulink > Signal Routing library on the canvas. Double
click the Data Store Write block to open the Block Parameters dialog box. In the Parameters tab, set
Data store name to MyCTLESignal. In the Element Selection tab, expand MyCTLESignal, select
CTLEConfigSelect, and press the Select >> button to add the selected element. Connect the Data
Store Read block to the ConfigSelect input of the PassThrough block.

At this point, this is how the MyCTLE PassThrough block configuration should look. This completes
setup for the time-domain (GetWave) simulation.

5-24

Implement Custom CTLE in SerDes Toolbox PassThrough Block

P4 untitled/Ru/MyCTLE * - Simulink prerelease use - O X

SIMULATION MODELING
. ™MOpen v W StopTime |2e-07 | .- = =
T & X | B . ' - d @ b A
New e Library Signal Boonal Step Run Step Sto Data

v & Print * Browser . Table Bg Fast Restart Back ~ - Forward Inspector

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS 2
@ 4 mene
® |[Pafuntiviea > [Pa]re b [BajMycTLE v
o
¥
=]
i
PassThrough

7]
» |
Ready 100% FixedStepDiscrete

Verify Code for Statistical Analysis

Double click the Init subsystem inside the Rx block to open the Block Parameter dialog box. To
connect the AMI parameters as connected within the MyCTLE block, click the Refresh Init button.
Since you used a system object, this connectivity is generated automatically. To verify this, click the
Show Init button to open the MATLAB code for Init subsystem. You should find code related to the
CTLE AMI parameter connections in the Custom user code area surrounded by the %% Begin and %
End statements.

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

MyCTLEInit.ConfigSelect = MyCTLEParameter.CTLEConfigSelect; % User added AMI parameter from SerDes IBIS-2MI Manager
MyCTLEInit.Mode = MyCTLEParameter.CTLEMode; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code arca (retained when '"Refresh Init' button is pressed)

Verify Operation of Custom CTLE

Run the simulation.

5-25

5 customize SerDes Systems

Pulse Response a
0.6 10
Unegualized p,(t)
Equalized p [t}
04
S 0
0.2
0= 0. 110
0 1 2 3 4 0 a0 100
(s] x1078 [ps]
Wﬁeﬁ:rm Derived from Pulse Response
|1 Unequalized p,(t) Name | Data
' Equalized p (1) 1 |Eve Height () 0.3053
2 [EyeWicdth (ps) 72 6030
= 0 3 [Eve Area (V... 147477
- Fi 5.9600
5 |WEC G5.0816
-0.5
0 0.5 1 1.5
[s] x1078

5-26

Frobability

Implement Custom CTLE in SerDes Toolbox PassThrough Block

4. Eye Diagram
File Tools View Help
@- a8 o0rP®| - ||-|C B Ld-|H

i)
=
=1
=
=
—

To evaluate the effect of the CTLE on output waveforms, open the SerDes IBIS-AMI manager dialog
box. In the AMI-Rx tab, set Current value of CTLEMode* parameter to 1 to use fixed mode
operation, and set Current value of CTLEConfigSelect* parameter to 4. Re-run the simulation.

5-27

5 customize SerDes Systems

Statistical Eye

Pulse Response
0.6 0.4 1 I:li:I
Unequalized pa[t] —]
Equalized pﬂ[t]
04
= =
0.2
0 == :
0 1 2 3 4 0 50 100
[s] x1078 [ps]
ngﬁeform Derived from Pulse Response
Unequalized p, 1 I"-Ja.me | Data
’ Equsized p,1 1 [Eve Height (v) 0.4335
2 |Eye ‘Wickh (ps) 921840
= 0 3 [Eve Area (V.. 261905
- 4 |COM 16.3293
\ ‘ 5 WEC 1.4382
I'.,||.~ \ 1 |
0.5
0 0s 1 1.5
(5] %1078

5-28

Frobability

Implement Custom CTLE in SerDes Toolbox PassThrough Block

4. Eye Diagram — O *
File Tools View Help u
@- a8 o0rP®| - ||-|C B Ld-|H

o,
=1
=
=
I
ki
e

Ready T=2e-07

See Also
CTLE | Configuration | PassThrough | SerDes Designer

More About
. “Customizing Datapath Building Blocks” on page 5-11
. “Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes

Performance” on page 4-11

5-29

Customize IBIS-AMI Models

6 Customize IBIS-AMI Models

Managing AMI Parameters

This example shows how to add, delete, modify, rename and hide AMI parameters in SerDes Toolbox.
These parameters are then available to be used with the existing datapath blocks, user created
MATLAB function blocks or optimization control loop. These parameters can be passed to or returned
from the AMI model executables (DLLs) created by SerDes Toolbox.

Example Setup

This example will be adding a new InOut Parameter 'Count' alongside the Pass-through datapath
block. This parameter will count the number of passes through AMI Init (which should be 1), then
pass the result to AMI GetWave where it will continue to count the total number of passes. While this
may not be especially useful functionality for AMI model development, it will serve to demonstrate
how new AMI parameters are added and used during model generation.

Inspect the Model

This example starts with a simple receiver model that only uses a pass-through block.

open_system('serdes add param.slx')

Configuration

h

Stimulus. WaveOut] Waveln Tx WaveOut———®|Waveln Analog Channel WaveOut P Waveln Rx WavaOut
-
L

6-2

Eye Diagram

This Simulink SerDes System consists of Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

* The Tx subsystem has the FFE datapath block to model the time domain portion of the AMI model
and an Init block to model the statistical portion. The Tx subsystem will not be used in this
example.

* The Analog Channel block has the parameter values for Target frequency, Loss, Impedance and
Tx/Rx analog model parameters.

* The Rx subsystem has the Pass-Through datapath block and an Init block to model the statistical
portion of the AMI model.
Run the Model

Run the model to verify that the base configuration is working as expected before editing. Two plots
are generated. The first is a live time domain (GetWave) eye diagram that is updated as the model is
running.

Managing AMI Parameters

4. Eye Diagram
File Tools VWiew Help

@- 5 OP® - a5 B -

il
'[E
=1

=
=
™

o
F

The second plot contains four views of the statistical (Init) results.

6-3

6 Customize IBIS-AMI Models

6-4

- nit Statistical Analysis Results — O

| File Edit View Insert Tools Desktop Window Help u

Odde | @ 0&8| K [E

Pulse Response Statistical Eye a
0.6 0.5 10
Un-equalized
Equalized
|
0.4 =
— — =
= =) @
=
0.2 o
e ——
0 . -0.5 10
0 1 2 2 4 1] 50 100
(5] x1078 [ps]
WEvﬁeform Derived from Pulse Response
Un-equalized MName Data
Equalized 1 |Eye Height [V} 0.3094
2 |Eye Width (ps) 73.0038

0.5 1 1.5
(5] x10%8

How to Add a new Parameter

Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button and select the AMI-Rx tab.

1. Highlight the PT datapath block and press Add Parameter...

2. Change the Parameter Name to: Count

3. Verify that the Current value is set to 0 (this will be the starting point for our count).
4. In the Description, type: Starting value of iteration count.

There are four possible values for Usage:

* In: These parameters are required inputs to the AMI Executable.

* Qut: These parameters are output from the AMI Init and/or AMI GetWave functions and returned
to the EDA tool.

* InOut: These parameters are required inputs to the AMI Executable and can also return values
from AMI Init and/or AMI GetWave to the EDA tool.

Managing AMI Parameters

* Info: These parameters are information for the User and/or the simulation tool and are not used
by the model.

5. Set the Usage to: InOut

There are six possible parameter Types:

* Float: A floating point number.

* Integer: Integer numbers without a fractional or decimal component.
e UI: Unit Interval (the inverse of the data rate frequency).

* Tap: A floating point number for use by Tx FFE and Rx DFE delay lines.
* Boolean: True and False values, without quotation marks.

* String: A sequence of ASCII characters enclosed in quotation marks.
6. Set the Type to: Integer

There are three possible parameter Formats:

* Value: A single data value.

List: A discrete set of values from which the user may select one value.

Range: A continuous range for which the user may select any value between Min and Max.
7. Set the Format to: Value

8. Hit OK to create the new parameter, then close the SerDes IBIS-AMI Manager.

Accessing a new Parameter from the Initialize Function

New parameters are accessed from the Initialize function (for statistical analysis) through the
impulseEqualization MATLAB function block. This example has added an InOut parameter. To use the
new InOut Parameter 'Count' in AMI Init:

1. Inside the Rx subsystem, double click on the Init block to open the mask.

2. Press the Refresh Init button to propagate the new AMI parameter(s) to the initialize subsystem.

3. Click OK to close the mask.

4. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

The impulseEqualization MATLAB function block is an automatically generated function which
provides the impulse response processing of the SerDes system block (IBIS-AMI Init).

Note that the new Count parameter has been automatically added as an output of this MATLAB
function as a Data Store Write block. No Data Store Read is required because the input parameters
are passed in as a PTSignal Simulink.Parameter.

6 Customize IBIS-AMI Models

©

Event Listener

4,—) ImpulseMatrix
ImpulseOut -

RxIlmpulseQut

ImpulseMatrix P Impulseln

6-6

RxImpulseln

impulseEqualization ”’ PTSignal.Count
PTCount PTCount

5. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB. The '%% BEGIN:' and '% END:' lines within this function block denote the section where
custom user code can be entered. Data in this section will not get over-written when Refresh Init is
run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

When Refresh Init was run, it added our new parameter to the Custom user code area so that it can
be used as needed:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

6. To add our custom code, scroll down to the Custom user code section, then enter PTCount =
PTCount + 1; The Custom user code section should look like this:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager

PTCount = PTCount + 1; % Count each iteration through this function.
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

7. Save the updated MATLAB function, then run the Simulink project to test the new code. Using the
Simulation Data Inspector, verify that the value of Count after Init is now '1'.

Note that the final value for Count was written to the PTSignal data store so that it is now available in
AMI GetWave.

How Usage affects Parameters in Init

Depending on what Usage was selected, parameters show up in the Custom User code area of the
impulseEqualization MATLAB function block in different ways:

Info Parameters

Managing AMI Parameters

Info parameters are informational for the user or simulation tool and are not passed to, or used by the
model, therefore they will not show up in the Initialize code.

In Parameters

In parameters are Simulink.Parameter objects that show up as a constant that can be used as needed.
For example, an In parameter named 'ITnParam' that was added to the VGA block would show up as
follows:

VGAParameter.InParam; % User added AMI parameter from SerDes IBIS-AMI Manager
Out Parameters

Out parameters are Simulink.Signal objects that show up as a parameter with the initial value defined
in the IBIS-AMI Manager. For example, an Out parameter named 'OutParam' that was added to the
VGA block with a current value of '2' would show up as follows:

VGAOutParam=2; % User added AMI parameter from SerDes IBIS-AMI Manager

Output parameters use a Data Store Write block to store values for passing out of Init to the EDA tool
(via the AMI Parameters Out string) and for use in GetWave (if desired). In the above example, a
Data Store Write block named 'OutParam' was automatically added to the Initialize Function:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. For example,
an InOut parameter named 'InOutParam' that was added to the VGA block would show up as follows:

VGAInQutParam = VGAParameter.InOutParam; % User added AMI parameter from SerDes IBIS-AMI Manager

The Input value is accessed by using the Simulink.Parameter reference VGAParameter.InOutParam,
while the output value uses a Data Store Write block to store values. In the above example, a Data
Store Write block named 'InOutParam' was automatically added to the Initialize Function for passing
values out of Init to the EDA tool (via the AMI Parameters Out string) and for use in GetWave (if
desired):

Accessing a new Parameter from the GetWave Function

New parameters are accessed from the GetWave function (for time-domain analysis) by adding a
Constant, Data Store Read or Data Store Write block to a datapath block. This example has added an
InOut parameter. To use the new InOut Parameter 'Count' in GetWave:

6 Customize IBIS-AMI Models

1. Inside the Rx subsystem, click on the Pass-Through datapath block and type Ctrl-U to look under
the Pass-Through mask.

D1 D1

In Pass Through Out

6-8

PassThrough

2. Add a Simulink/Signal Routing Data Store Read block to the canvas

* Name the Data Store Read block: PTCount Read
* Double-click on the Data Store Read block and change the Data store name to: PTSignal

* On the Element Selection tab, in the Specify element(s) to select box type: PTSignal.Count and
press the Select>> button to select the Count element.

* Resize the block to make all names and element properties visible.
* Click OK to close the dialog.

3. Add a Simulink/Math Operations Sum block to the canvas.
4. Add a Simulink/Sources Constant block to the canvas and set the value to 1.
5. Add a Simulink/Signal Routing Data Store Write block to the canvas.

* Name the Data Store Write block: PTCount Write
* Double-click on the Data Store Write block and change the Data store name to: PTSignal

* On the Element Assignment tab, in the Specify element(s) to select box type: PTSignal.Count
and press the Select>> button to select the Count element.

* Resize the block to make all names and element properties visible.
* Click OK to close the dialog.

6. Wire up each of the elements so that the Pass Through block now looks like the following:

Managing AMI Parameters

D1 D1
In Pass Through Out

PassThrough

PTSignal.Count + » PTSignal.Count

D1 D1

PTCount Read PTCount_ Write

7. Save, then run the Simulink project to test the new code.

By adding Value Labels to the output port of the Sum block, see that the value of Count after GetWave
is 3.2e+04 (Samples Per Symbol * Number of symbols). After generating AMI model executables, the
value of Count will be available in the Parameters out string in an AMI simulator.

How Usage affects Parameters in GetWave

New parameters are accessed from the GetWave function in different ways, depending on what Usage
was selected.

Info Parameters
Info parameters are informational for the user or simulation tool and cannot be used by the model.
In Parameters

In parameters are Simulink.Parameter objects that are used by adding a Constant block. For example,
an In parameter named 'InParam' that was added to the Rx VGA block can be accessed by any of the
Rx blocks by adding a Constant block like this:

VGEAParameter. InParam I __________ Y

Constant

For more information, see “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2.

Out Parameters

6-9

6 Customize IBIS-AMI Models

6-10

Out parameters are Simulink.Signal objects that use a Data Store Write block to store values for
passing out of GetWave to the EDA tool (via the AMI Parameters Out string) or to other Rx blocks.
For example, an Out parameter named 'OutParam' that was added to the Rx VGA block can be written
to with a Data Store Write block like this:

P - WGASignal . OutParam

Data Store

nJ
WA e
vVrLe

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. The Input value
can be accessed with either a constant block or with a Data Store Read block, while the output value
uses a Data Store Write block to store values for passing out of GetWave to the EDA tool (via the

AMI Parameters Out string) or to other Rx blocks. For example, if an InOut parameter named
'InOutParam' is added to the Rx VGA block, the initial Input value can be accessed by any Rx block by
adding a Constant block like this:

VGEAParameter. InOutParam I __________ Y

Constant

Alternately, the updated Input value can be accessed with a Data Store Read block like this:

VGEASIgnal. InOutParam Fe----m--e- ot
Data Store
Read

The output value can be written to with a Data Store Write block like this:

JanEE R > VGASignal.InQutPararm

Data Store

T
virbe

How to Rename a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be renamed.

User generated AMI parameters are renamed as follows.

Update the AMI Parameters

Managing AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be renamed and press Edit...

4. In the Parameter name field, changed the name as desired.

5. Hit OK, then Close the SerDes IBIS-AMI Manager

Update Init

1. Push into either the Tx or Rx subsystem block where the parameter is used.
2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to propagate the AMI parameter name change to the initialize
subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-click on the
initialize block to open the Initialize Function.

6. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

7. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
8. Rename all instances of the parameter.

9. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the renamed parameter was used and rename each instance of
the parameter.

Verify Results
Run a simulation to verify that the project still operates with no errors or warnings.
How to Delete a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or hidden but
cannot be deleted.

User generated AMI parameters are deleted as follows.
Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the Open SerDes
IBIS-AMI Manager button.

6-11

6 Customize IBIS-AMI Models

6-12

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be deleted and press Delete Parameter.

4. Confirm the deletion, then Close the SerDes IBIS-AMI Manager.

Update Init

1. Push into either the Tx or Rx subsystem block where the parameter was used.
2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to remove any deleted Out or InOut parameter Data Stores from the
initialize subsystem.

4. Click OK to close the mask.
5. Click on the Init block again and type Ctrl-U to look under the Init mask
6. Double-click on the initialize block to open the Initialize Function.

7. Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB.

8. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
9. Delete or comment out all instances of the removed parameter.

10. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the removed parameter was used and delete each instance of
the parameter.

Verify Results
Run a simulation to verify that the project still operates with no errors or warnings.
How to Hide a Parameter

There may be times when a parameter is required for model functionality, but needs to be hidden
from the user. For example, to keep a user from changing the FFE mode, remove this parameter
from .ami file - effectively hardcoding the parameter to a single value. The mode parameter is still
present in the code so that the FFE continues to work as expected, but the user can no longer change
the value.

To hide a parameter from both Init and GetWave:
1. Open the mask by double-clicking on the datapath block of interest.

2. Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

3. Deselect the parameter(s) to be hidden.

Managing AMI Parameters

A few things to keep in mind about hiding parameters:
* When hiding parameters, verify that the current parameter value(s) are correct. The current value
will now always be used as the default value for that parameter.

* Hiding a parameter has no effect on the model executable. It only removes the parameter from the
generated .ami file.

+ If the hidden parameter is of type Out or InOut, it will still show up in the AMI Parameters Out
string of the model executable.

How to Modify a Parameter

All the parameters used in SerDes Toolbox are modified via the SerDes IBIS-AMI Manager dialog by
using the Edit... button. However, the parameter values that can be modified vary depending on
which type of parameters they are.

For the built-in System Objects, only the following fields can be modified:

* Current Value

* Description

* Format

* Default

* List values (for Format List)

» Typ/Min/Max values (for Format Range)

For the user defined parameters all fields can be modified.

How to add Jitter Parameters

Jitter and noise parameters such as Tx Rj, Tx Dj, Tx DCD, Rx Rj, Rx Dj and Rx DCD or other
reserved parameters such Rx Receiver Sensitivity are post-processing parameters that are used by
an IBIS-AMI compliant simulator to modify the simulation results accordingly. These parameters are
added via the SerDes IBIS-AMI Manager dialog by using the Reserved Parameters... button.

For example, to add Rx Receiver Sensitivity and Rx Dj to a receiver .ami file, click the Reserved
Parameters... button to bring up the Rx Add/Remove Jitter&Noise dialog, select the

Rx_Receiver Sensitivity and Rx_Dj boxes, then click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file.

To set the values for these two new parameters:

» Select Rx_Receiver Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

* Set the Current Value to 0.04

* Change the Format to Value.

* Click OK to save the changes.

» Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

* Set the Current Value to 0.0

* Change the Type to UI.

* Change the Format to Range.

6-13

6 Customize IBIS-AMI Models

6-14

* Set the Typ value to 0.05
* Set the Min value to 0.0
* Set the Max valueto 0.1
* Click OK to save the changes.

These two parameters will show up in the Reserved Parameters section of the .ami file like this:
(Rx_Receiver Sensitivity (Usage Info)(Type Float) (Value 0.04))

(Rx Dj (Usage Info) (Type UI) (Range 0.05 0.0 0.01))

For more information on IBIS reserved parameters see the IBIS specification.

References

IBIS 6.1 Specification

See Also
FFE | PassThrough | SerDes Designer

More About

. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

https://ibis.org/ver6.1/ver6_1.pdf

Industry Standard IBIS-AMI Models

* “PCle4 Transmitter/Receiver IBIS-AMI Model” on page 7-2

* “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-15

* “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-26

* “CEI-56G-LR Transmitter/Receiver IBIS-AMI Model” on page 7-38

» “USB3.1 Transmitter/Receiver IBIS-AMI Model” on page 7-47

* “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-56

7

Industry Standard IBIS-AMI Models

PCled4 Transmitter/Receiver IBIS-AMI Model

7-2

This example shows how to create generic PCle Generation 4 (PCle4) transmitter and receiver IBIS-
AMI models using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-
AMI and PCI-SIG PCle4 specifications.

PCled4 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the blocks required for PCIe4 in the SerDes Designer app. The model is then exported to
Simulink® for further customization.

This example uses the SerDes Designer model pcie4 txrx ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('pcied4 txrx _ami')

Tx Rx
| DFE /
.—[FFE D Lr:,har~ne|J~~[D H CTLE H CDR J—~
FFE AnalogOut Channel Analogln CTLE DFECDR

A PCle4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap, and ten presets. The receiver model uses a continuous time linear equalizer (CTLE) with
seven pre-defined settings, and a 2-tap decision feedback equalizer (DFE). To support this
configuration the SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 62.5 ps, since the maximum allowable PCle4 operating frequency is 16
GHz

* Target BER is set to 1e-12.

* Samples per Symbol, Modulation, and Signaling are kept at default values, which are
respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup
* The Tx FFE block is set up for one pre-tap and one post-tap by including three tap weights.
Specific tap presets will be added in later in the example when the model is exported to Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1.05 V, Rise time is 12 ps, R (output
resistance) is 50 Ohms, and C (capacitance) is 0.5 pF according to the PCle4 specification.

Channel Model Setup

¢ Channel loss is set to 15 dB.
+ Target Frequency is set to the Nyquist frequency, 8 GHz.
+ Differential impedance is kept at default 100 Ohms.

PCle4 Transmitter/Receiver IBIS-AMI Model

Receiver Model Setup

* The Rx Analogin model is set up so that R (input resistance) is 50 Ohms and C (capacitance) is
0.5 pF according to the PCle4 specification.

* The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived
from the transfer function given in the PCle4 Behavioral CTLE specification.

* The Rx DFE/CDR block is set up for two DFE taps. The limits for each tap have been individually
defined according to the PCle4 specification to +/-30 mV for tapl and +/-20 mV for tap2.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the PCle4 setup.

Add the BER plot from ADD Plots and observe the results.

BER

0.25

0.2

[Probability]

0 10 20 30 40 50 60
[ps]

Change the Rx CTLE Configuration select parameter value from 0 to 6 and observe how this
changes the data eye.

7

Industry Standard IBIS-AMI Models

0.25

0.2 s

0.15 &

0.1

0.05

[ps]

[Probability]

Change the value of the Tx FFE Tap weights from [0 1 0] to [-0.125 0.750 -0.125] and
observe the results.

PCle4 Transmitter/Receiver IBIS-AMI Model

[Probability |

[ps]

Change the Rx CTLE Mode to Adapt and observe the results. In this mode all CTLE values are swept
to find the optimal setting.

7-5

7 Industry Standard IBIS-AMI Models

BER

0158

0.1

0.05

[V]
=
[Probability]

-0.05

[ps]

Before continuing, reset the value of the Tx FFE TapWeights back to [0 1 0] and Rx CTLE
ConfigSelect back to 0. Leave the Rx CTLE Mode at Adapt. Resetting these values here will avoid
the need to set them again after the model has been exported to Simulink. These values will become
the defaults when the final AMI models are generated.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

PCle4 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customize it as required for PCle4 in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

PCle4 Transmitter/Receiver IBIS-AMI Model

Configuration

Slirmulus Ot warva_in

Tx

wiee_pu

In

[

Angag Chanmed

Ot

wave_in

Rx

e _oul

y

Eye Diagrar

* Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling is

carried over from the SerDes Designer app.

* Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not

carried over from the SerDes Designer app.

* Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block

carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters is carried

over from the SerDes Designer app.

* Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time-domain (GetWave) eye diagram that is updated as the

model is running.

7-7

7 Industry Standard IBIS-AMI Models

F

File Tools View Help

-l ®k - Q-3 H-| -

ik} !
k|
=
E
=
m
i

Ready T=1.25e-07

The second plot contains four views of the statistical (Init) results, similar to what is available in the
SerDes Designer App.

PCle4 Transmitter/Receiver IBIS-AMI Model

[Init Statistical Analysis Results — O

File Edit View Inset Tools Desktop Window Help

Udde @ 08| K[E

Pulse Response Statistical Eye

0.4 10°
Un-equalized
0.3 Equalized
=
ED.E ﬁ
e
0.1 o
a4
0 2 4 (5]
(s] x 1078 [ps]
Wﬁ\gefarm Derived from Pulse Response
. Un-equalized Mame Data
Equalized 1 |Eye Height (v} 0.0861
2 |Eye Width (ps) 41,0421
= 0
-0.5
0 2 4 6 8
[s] x107°

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in final AMI model to Fixed.

Review Rx CTLE Block

* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the PCIE4 Behavioral CTLE specification.

* CTLE Mode is set to Fixed, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

7 Industry Standard IBIS-AMI Models

7-10

Update Rx DFECDR Block
* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Clear the Phase offset and Reference offset parameters to remove these parameters from the
AMI file, effectively hard-coding these parameters to their current values.

Generate PCle4 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
PCle4, then generates IBIS-AMI compliant PCIe4 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes

IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry
standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box, the reserved

parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values in three different ways:
* Leave the Tx FFE tap values at their default configuration and you can enter any floating point
value for the pre/main/post taps values.

* Create a new AMI parameter to automatically select preset values - see “Managing AMI
Parameters” on page 6-2.

» Directly specify the ten preset coefficients as defined in the PCle4 specification - shown below in
this example.

When you directly specify the preset coefficients, you change the format of the three TapWeights
and specify the exact value to use for each preset. Only these ten defined presets will be allowed, and
all three taps must be set to the same preset to get the correct values.

Set Preshoot Tap

* Select TapWeight -1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.000.

* Change the Description to Preshoot tap value.

* Change the Format from Range to List.

* Change the Default value to 0.000.

e In the List values box enter: [0.000 0.000 0.000 0.000 0.000 -0.100 -0.125 -0.100
-0.125 -0.166].

* Inthe List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II].

PCle4 Transmitter/Receiver IBIS-AMI Model

* Click OK to save the changes.
Set Main Tap

* Select TapWeight 0, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.750.

* Change the Description to Main tap value.

* Change the Format from Range to List.

* Change the Default value to 0.750.

* In the List values box enter: [0.750 0.833 0.800 0.875 1.000 0.900 0.875 0.700
0.750 0.834].

* In the List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II]'

* Click OK to save the changes.
Set De-emphasis Tap

* Select TapWeight 1, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to -0.250.

* Change the Description to: De-Emphasis tap value.

* Change the Format from Range to List.

* Change the Default value to -0.250.

* In the List values box enter: [-0.250 -0.167 -0.200 -0.125 0.000 0.000 0.000
-0.200 -0.125 0.000].

* In the List_Tip values box enter: ["PO" "P1" "P2" "P3" "P4" "P5" "P6" "P7" "P8"
IIP9II].

* Click OK to save the changes.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Tx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCle4 jitter mask requirements.

Set Tx DCD Jitter Value

* Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 3.0e-11

* Click OK to save the changes.

7-11

7

Industry Standard IBIS-AMI Models

7-12

Set Tx Dj Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 3.0e-11

* Click OK to save the changes.

Set Tx Rj Jitter Value

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 2.0e-12

* Click OK to save the changes.

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format of a typical
AMI file, the reserved parameters are listed first followed by the model specific parameters.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_ DCD, Rx_Dj and Rx_Rj boxes and click OK to add
these parameters to the Reserved Parameters section of the Rx AMI file. The following ranges allow
you to fine-tune the jitter values to meet PCle4 jitter mask requirements.

Set Rx DCD Jitter Value

* Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 3.0e-11

* Click OK to save the changes.

Set Rx Dj Jitter Value

* Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.
* Change the Format to Range.

PCle4 Transmitter/Receiver IBIS-AMI Model

* Set the Typ value to 0.
* Set the Min value to 0.
* Set the Max value to 3.0e-11
* Click OK to save the changes.

Set Rx Rj Jitter Value

* Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 1.0e-12

* Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

* Update the Tx model name to pcie4 tx.
* Update the Rx model name to pcie4 rx.

* Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max analog
model corner values by +/-10%.

* Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 20, 000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

* Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

* Set the IBIS file name to be pcie4 serdes.
* Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCle4 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

References

1 PCI-SIG, https://pcisig.com.

2 SiSoft Support Knowledge Base Article: PCle-Gen4 Compliance Kit, https://
sisoft.nal.teamsupport.com/knowledgeBase/15488464.

See Also
CTLE | DFECDR | FFE | SerDes Designer

7-13

https://pcisig.com/
https://sisoft.na1.teamsupport.com/knowledgeBase/15488464
https://sisoft.na1.teamsupport.com/knowledgeBase/15488464

7 Industry Standard IBIS-AMI Models

More About

. “Managing AMI Parameters” on page 6-2
. “Customizing SerDes Toolbox Datapath Control Signals” on page 5-2

External Websites

. https://www.sisoft.com/support/

7-14

https://www.sisoft.com/support/

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™. Since DDR5 DQ signals are bidirectional, this example creates Tx
and Rx models for the SDRAM. The generated models conform to the IBIS-AMI specification.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDR5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI model generation.

Type the following command in the MATLAB® command window to open the ddr5 sdram model:

>> serdesDesigner('ddr5 sdram')

Tx Rx
g o DFE /
D Lr:,h annel VGA CDR
AnalogOut Channel Analogln ViEA DFECDR

The SDRAM has a DDR5 transmitter (Tx) using no equalization. The SDRAM also has a DDR5
receiver (Rx) using a variable gain amplifier (VGA) with 7 pre-defined settings and a 4-tap decision
feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.

+ Target BER is set to 100e-18.

* Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ
(nonreturn to zero), respectively.

Transmitter Model Setup

* The DDR5 SDRAM has no transmit equalization, so only an analog model is required.

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 48 ohms, and C (capacitance) is 0.65 pE The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

* Channel loss is set to 5 dB, which is typical of DDR channels.
* Single-ended impedance is set to 40 ohms.
+ Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

7-15

7 Industry Standard IBIS-AMI Models

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

» The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

* The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045] YV, and the Maximum tap value
issetto [0.05 0.075 0.06 0.045] V.

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 SDRAM setup.
* Add the BER plot from Add Plots and observe the results.

BER

[Probability]

0 20 40 60 BO 100 120 140 160 180 200
[ps]

* Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

7-16

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

Pulse Response

Unequalized

0.8 Equalized | |

0.7 .

0.6 7

0.5 7

0.4 1

[V]

0.3 7

0.2 1

0.1 .

[s] %1078

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

7-17

7 Industry Standard IBIS-AMI Models

Configuratior

7-18

o1 D1 o o1
——| Waveln Tx WaveOut 4’{\'\1’3\'&“1 Anzlog Channel WaveOul Wiaveln Rx WaveOut >

Eye Diagram

* Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

* Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS

(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double-click the Tx block to look inside the Tx subsystem. Since there is no algorithmic model for
the transmitter, the Tx subsystem is simply a pass through from the Waveln to WaveOut ports.

* Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the VGA and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4. Eye Diagram — O *

File Tools View Help u
@-aor® - a- | B L-| k8

Ready T=4.1Te-07

After the simulation has completed the second plot contains four views of the statistical (Init) results,
similar to what is available in the SerDes Designer app.

7-19

7 Industry Standard IBIS-AMI Models

4\ Init Statistical Analysis Results — O *
File Edit View Insert Tools Desktop Window Help u
o '] LY
D de @08 &E
: Pulse Response Statistical Eye g
10
Un-equalized
Equalized
=
—) =
E.U'E ; 1|:|_2 E
g
il
0 ,] -0. 0
0 1 2 3 4 0 50 100 150 200
(5] <108 (ps]

Waveform Derived from Pulse Response

0.5
Un-equallzed Mame Data
Equalized 1 |Eye Height (V} 07624
2 |Eye Width (ps) 1969085
= 0
0.5 LA
0 1 2 3

Review Rx VGA Block

* Inside the Rx subsystem, double-click the VGA block to open the VGA Block Parameters dialog

box.
* The Mode and Gain settings are carried over from the SerDes Designer app.

Update Rx DFECDR Block

+ Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters

dialog box.

* The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and le- 06, respectively, which are reasonable values based on DDR5 SDRAM
expectations.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

7-20

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

Generate DDR5 SDRAM IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 SDRAM, and then generates IBIS-AMI compliant DDR5 SDRAM model executables, IBIS and
AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Review Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. Notice that there are no model-
specific parameters since the DDR5 SDRAM Tx does not have any equalization.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following values allow you to
fine-tune the jitter values to meet DDR5 jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently TBD.
Set Tx Deterministic Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.1000

* Change the Type to UI.

* Change the Format to Value.

* Click OK to save the changes.

Set Tx Random Jitter Value

» Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0050

* Change the Type to UI.

* Change the Format to Value.

* Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set the VGA Gain:

* Highlight Gain.
* Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.
* In the Description box, type Rx Amplifier Gain.

7-21

7 Industry Standard IBIS-AMI Models

Make sure Format is set to List and set Default to 1.
In the List values box, enter [0.5 0.631 0.794 1 1.259 1.585 2]

In the List_Tip values box, enter ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6
dBu]

Click OK to save the changes.

Set First DFE Tap Weight

Highlight TapWeight 1.

Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
Click OK.

Set Second DFE Tap Weight

Highlight TapWeight 2.

Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075
Click OK.

Set Third DFE Tap Weight

Highlight TapWeight 3.

Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06
Click OK.

Set Fourth DFE Tap Weight

Highlight TapWeight 4.

Click the Edit... button to launch the Add/Edit AMI Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0.045
Click OK.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj and Rx_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Rx AMI file. The
following values allow you to fine-tune the jitter values to meet DDRS jitter mask requirements.

Note: All JEDEC DDR5 SDRAM values are currently TBD.

Set Rx Receiver Sensitivity Value

7-22

Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

Set the Current Value to 0.040
Change the Format to Value.

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

Click OK to save the changes.

Set Rx Deterministic Jitter Value

Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.01750

Change the Type to UI.

Change the Format to Value.

Click OK to save the changes.

Set Rx Random Jitter Value

Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.00375

Change the Type to UI.

Change the Format to Value.

Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

Update the Tx model name to ddr5 sdram_tx.
Update the Rx model name to ddr5 sdram_rx.

Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog
model corner values by +/-10%.

Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates
model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

Set the Rx model Bits to ignore value to 250000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

Set the Models to export to Both Tx and Rx and ensure that all files have been selected to be
generated (IBIS file, AMI file(s) and DLL file(s)). Note that while the Tx does not implement any
equalization, we are still generating a pass-through model that will allow Tx jitter to be added to
the simulation if desired.

Set the IBIS file name to temp_ddr5_ sdram.
Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

POD11 IO Z0O34 ODTOFF: 34 ohm output impedance with no input ODT.
POD11 IO Z0O48 ODTOFF: 48 ohm output impedance with no input ODT.

7-23

7 Industry Standard IBIS-AMI Models

7-24

+ PODI11 IN ODT34 C: Input with 34 ohm ODT.
+ PODI11 IN ODT40 C: Input with 40 ohm ODT.
+ PODI11 IN ODT48 C: Input with 48 ohm ODT.
« POD11 IN ODT60 C: Input with 60 ohm ODT.
« POD11 IN ODT80 C: Input with 80 ohm ODT.
+ PODI11 IN ODT120 C: Input with 120 ohm ODT.
+ PODI11 IN ODT240 C: Input with 240 ohm ODT.

To generate this complete IBIS file, the following changes were made to temp _ddr5 sdram.ibs
using a text editor:

* Created one pin with a signal name of DQ1 sdram and model name of dq.

* Added two drivers with Model_type of I/O and named them POD11 10 7034 ODTOFF and
POD11 IO Z048 ODTOFF, respectively.

* Added seven receiver models and named them:
a) POD11 IN ODT34 C

b) POD11 IN ODT40 C

c) POD11 IN ODT48 C

d) POD11 IN ODT60 C

e) POD11 IN ODT80 C

f) POD11 IN ODT120 C

g) POD11 IN ODT240 C

* Added VI curves and Algorithmic Model sections to all above mentioned models.
¢ Added a Model Selector section that references all above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References

1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf.

2 SiSoft Support Knowledge Base Article: DDR4 Registered - Rawcard B for 3 slot system, https://
sisoft.nal.teamsupport.com/knowledgeBase/8976521.

See Also
DFECDR | SerDes Designer | VGA

More About
. “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 7-26

https://ibis.org/ver7.0/ver7_0.pdf
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

. “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-56

External Websites
. https://www.sisoft.com/support/

7-25

https://www.sisoft.com/support/

7 Industry Standard IBIS-AMI Models

DDR5 Controller Transmitter/Receiver IBIS-AMI Model

7-26

This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI models using the
library blocks in SerDes Toolbox™. Since DDR5 DQ signals are bidirectional, this example creates Tx
and Rx models for the controller. The generated models conform to the IBIS-AMI specification.

DDRS5 Controller Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver architectures
using the blocks required for DDRS5 in the SerDes Designer app. The SerDes system is then exported
to Simulink® for further customization and IBIS-AMI Model generation.

Type the following command in the MATLAB® command window to open the ddr5 controller
model:

>> serdesDesigner('ddr5 controller')

Tx Rx

PR EHEHEHE -

FFE AnalogOut Channel Analogin CTLE DFECDR

The controller has a DDR5 transmitter (Tx) using 5-tap feed forward equalization (FFE). The
controller also has a DDRb5 receiver (Rx) using a continuous time linear equalizer (CTLE) with 8 pre-
defined settings, an automatic gain control (AGC), and a 4-tap decision feedback equalizer (DFE) with
built-in clock data recovery.

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8 Gbps for DDR5-4800.
+ Target BER is set to 100e-18.
» Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are respectively 16 and
NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

* The Tx FFE block is set up for one pre-tap, one main-tap, and three post-taps by including five tap
weights. This is done with the array [0 1 0 0 0], where the main tap is specified by the largest
value in the array. Tap ranges will be added later in the example when the model is exported to
Simulink.

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

Channel Model Setup

Channel loss is set to 5 dB, which is typical of DDR channels.
Single-ended impedance is set to 40 ohms.
Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

The Rx AnalogIn model is set up so that R (input resistance) is 40 Ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

The CTLE block is set up for 8 configurations. The Specification is set to DC Gain and AC
Gain. DC Gain issetto [0 -1 -2 -3 -4 -5 -6 -7] dB. Peaking frequency is set to 2.4 GHz.
All other parameters are kept at their default values.

The AGC block has the default Target RMS voltage of 0.3 Volts.

The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045] V and the Maximum tap value
issetto [0.05 0.075 0.06 0.045] V.

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 Controller setup.

Add the BER plot from Add Plots and observe the results.

7-27

7

Industry Standard IBIS-AMI Models

0 20 40 a0 80 100 120 140 160 180 200
[ps]

Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the results.

7-28

[Probability |

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

Pulse Response

Unequalized
0.8 r Equalized 7

0.7 7

05 7

0.2r 7

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDRS5 Controller Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

7-29

7 Industry Standard IBIS-AMI Models

Configuratior

7-30

o1 D1 o o1
——| Waveln Tx WaveOut 4’{\'\1’3\'&“1 Anzlog Channel WaveOul Wiaveln Rx WaveOut >

Eye Diagram

* Double-click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation, and Signaling are
carried over from the SerDes Designer app.

* Double-click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS

(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double-click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double-click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE, AGC
and DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced
to model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

#. Eye Diagram — O et
File Tools View Help o
@-aorP® =- Q- C H-L-kH

o
E
=1
E
=
L]
n
o

Ready T=4.1Te-07

After the simulation has completed the second plot contains four views of the statistical (Init) results,
similar to what is available in the SerDes Designer app.

7-31

7

Industry Standard IBIS-AMI Models

7-32

4\ Init Statistical Analysis Results - O X
File Edit View Inset Tools Desktop Window Help E
i) i
Ngde | @ 08| kE
Pulse Response Statistical Eye
1 05 107
Un-equalized
Equalized
102 £
505 = 3
=
10% o
0 ' ' 05l LS
0 1 2 3 4 0 50 100 150 200
[s] <108 [ps]
Waveform Derived from Pulse Response
0.5 M fla A4, M Dat
Un-equalized cslips ata
1 |Ewe Height (W) 0.56320
2 |Eve Width (ps) 1965.9035
> 0
-0.5
0 1 2 3
[s] <10

Review Tx FFE Block
Inside the Tx subsystem, double-click the FFE block to open the FFE Block Parameters dialog box.
* The Tap Weights are carried over from the SerDes Designer app.

Review Rx CTLE Block
Inside the Rx subsystem, double-click the CTLE block to open the CTLE Block Parameters dialog

box.
* DC gain, AC gain, and Peaking frequency are carried over from the SerDes Designer app.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Review Rx AGC Block

Inside the Rx subsystem, double-click the AGC block to open the AGC Block Parameters dialog

box.
* The Target RMS voltage is carried over from the SerDes Designer app.

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

* The Maximum gain is set to 10 and Averaging length (the number of bits over which the
average is calculated) is set to 100. These values are reasonable for a generic controller model.

Update Rx DFECDR Block
* Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block Parameters

dialog box.

* The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS settings are
carried over from the SerDes Designer app. The Adaptive gain and Adaptive step size are set to
3e-06 and le- 06, respectively, which are reasonable values based on DDR5 Controller
expectations.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect Phase offset and Reference offset to remove these parameters from the AMI file,
effectively hard-coding these parameters to their current values.

Generate DDR5 Controller IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
a DDR5 Controller, and then generates IBIS-AMI-compliant DDR5 Controller model executables, IBIS
and AMTI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the
analog model values are converted to standard IBIS parameters that can be used by any industry-
standard simulator.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set Pre-Emphasis Tap

* Highlight TapWeight -1

* Click the Edit... to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0. 2.
* Click OK to save the changes.

Set Main Tap
* Highlight TapWeight 0.
* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 1, Min = 0.6, and Max = 1.
+ Click OK.

Set First Post-Emphasis Tap

* Highlight TapWeight 1.
* Select the Edit... button to launch the Add/Edit Parameter dialog box.
* Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0. 2.

7-33

7 Industry Standard IBIS-AMI Models

Click OK.

Set Second Post-Emphasis Tap

Highlight TapWeight 2.

Select the Edit... button to launch the Add/Edit Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min= -0.1, and Max = 0. 1.
Click OK.

Set Third Post-Emphasis Tap

Highlight TapWeight 3.

Select the Edit... button to launch the Add/Edit Parameter dialog box.

Make sure Format is set to Range and set Typ = 0, Min = -0.1, and Max = 0.1.
Click OK.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Reserved Parameters... button to bring up the
Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click OK to add these
parameters to the Reserved Parameters section of the Tx AMI file. The following jitter values can be
adjusted to meet the DDR5 mask requirements for a specific controller.

Set Tx Deterministic Jitter Value

Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.0500

Change the Type to UI.

Change the Format to Value.

Click OK to save the changes.

Set Tx Random Jitter Value

Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
Set the Current Value to 0.0025

Change the Type to UI.

Change the Format to Value.

Click OK to save the changes.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set First DFE Tap Weight

7-34

Highlight TapWeight 1.
Click the Edit... button to launch the Add/Edit Parameter dialog box.
Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

» Click OK.

Set Second DFE Tap Weight

* Highlight TapWeight 2.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max = 0.075.
* Click OK.

Set Third DFE Tap Weight

* Highlight TapWeight 3.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06.
» Click OK.

Set Fourth DFE Tap Weight

* Highlight TapWeight 4.

* Click the Edit... button to launch the Add/Edit Parameter dialog box.

* Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max = 0. 045.
» Click OK.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model click the Reserved Parameters... button to bring up the
Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj, Rx_Noise,
Rx_UniformNoise and Rx_Rj boxes and click OK to add these parameters to the Reserved
Parameters section of the Rx AMI file. The following jitter and noise values can be adjusted to meet
the DDR5 mask requirements for a specific controller.

Set Rx Receiver Sensitivity Value

* Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

¢ Set the Current Value to 0.040

* Change the Format to Value.

* Click OK to save the changes.

Set Rx Deterministic Jitter Value

* Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0125

* Change the Type to UI.

* Change the Format to Value.

* Click OK to save the changes.

Set Rx Gaussian Noise Value

» Select Rx_Noise, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.

7-35

7 Industry Standard IBIS-AMI Models

* Set the Current Value to 0.0015

* Change the Format to Value.

* Click OK to save the changes.

Set Rx Uniform Noise Value

* Select Rx_UniformNoise, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

* Set the Current Value to 0.0025

* Change the Format to Value.

* Click OK to save the changes.

Set Rx Random Jitter Value

* Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.00375

* Change the Type to UI.

* Change the Format to Value.

* Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

* Update the Tx model name to ddr5 controller tx
* Update the Rx model name to ddr5 controller rx

* Note that Tx and Rx corner percentage is set to 10. This scales the minimum/maximum analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx AMI model settings. This creates
model executables that support both statistical (Init) analysis and time-domain (GetWave)
simulation.

* Set the Tx model Bits to ignore to 5 since there are five taps in the Tx FFE.

* Set the Rx model Bits to ignore to 250000 to allow sufficient time for the Rx DFE taps to settle
during time domain simulations.

» Verify that both Tx and Rx are set to export and that all files have been selected to be generated
(IBIS file, AMI file(s) and DLL file(s)).

* Set the IBIS file name to temp ddr5 controller.ibs
* Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers, DDR5 requires
variable output drive strength and input on-die termination (ODT). While the same algorithmic AMI
model is used, multiple analog models are required to cover all these use cases. The generation of
these analog models is out of scope for this example, so a completed IBS file with the following
analog models in it is available in the current example directory:

* POD11 IO ZO50 ODTOFF: 50 ohm output impedance with no input ODT.

7-36

DDRS5 Controller Transmitter/Receiver IBIS-AMI Model

« POD11 IN ODT40 C: Input with 40 ohm ODT.
» POD11 IN ODT60 C: Input with 60 ohm ODT,

To generate this complete IBIS file, the following changes were made to temp ddr5 controller.ibs
using a text editor:

* Created one pin with a signal name of DQ1 controller and model name of dq.
* Changed the driver Model type to [/O and named it POD11 10 Z050 ODTOFE.

* Added two receiver models and named them POD11 IN ODT40 C and POD11 IN ODT60 C,
respectively.

* Added VI curves and Algorithmic Model sections to all above mentioned models.
* Added a Model Selector section that references the above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry-standard AMI model simulator.

References

1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf.

2 SiSoft Support Knowledge Base Article: DDR4 Registered - Rawcard B for 3 slot system, https://
sisoft.nal.teamsupport.com/knowledgeBase/8976521.

See Also
AGC | CTLE | DFECDR | FFE | SerDes Designer

More About
. “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-15
. “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training” on page 7-56

External Websites
* https://www.sisoft.com/support/

7-37

https://ibis.org/ver7.0/ver7_0.pdf
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://sisoft.na1.teamsupport.com/knowledgeBase/8976521
https://www.sisoft.com/support/

7

Industry Standard IBIS-AMI Models

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

7-38

This example shows how to create generic CEI-56G-LR transmitter and receiver IBIS-AMI models
using the library blocks in SerDes Toolbox™. The generated models conform to the IBIS-AMI and OIF-

CEI-04.0 specifications.
CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for CEI-56G in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model cei 56G Ir txrx. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('cei 56g lr txrx')

Tx Rx
| DFE /
.—t FFE l> [r:,harne|J~~[D H CTLE H CDR J—~
FFE AnalogOut Channel Analogln CTLE DFECDR

A CEI-56G-LR compliant transmitter uses a 4-tap feed forward equalizer (FFE) with two pre-taps and
one post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with 17 pre-defined
settings, and a 12 to 18 tap decision feedback equalizer (DFE). To support this configuration the
SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 35.71 ps, for a symbol rate of 28 GBaud and a PAM4 rate of 56 Gbps.

+ Target BER is set to 100e-6, which assumes a compliant receiver with FEC.

* Modulation is set to PAMA4.

* Samples per Symbol and Signaling are kept at default values, which are respectively 16 and
Differential.

Transmitter Model Setup

* The Tx FFE block is set up for two pre-taps and one post-tap by including four tap weights, as
specified in the OIF-CEI-04.0 specification. This is done with the array [0 0 1 0], where the main
tap is specified by the largest value in the array.

* The Tx AnalogOut model is set up so that Voltage is 1.0 V, Rise time is 2.905 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.16 pF.

Channel Model Setup

e Channel loss is set to 20 dB.

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

+ Differential impedance is kept at default 100 Ohms.
+ Target Frequency is set to the Nyquist frequency, 14 GHz.

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.16 pFE.

* The Rx CTLE block is set up for 147 configurations using the GPZ (Gain Pole Zero) matrix.
» The Rx DFE/CDR block is set up for 18 DFE taps. The limits for the taps are setto -0.7 to 0.7.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the CEI-56G-LR setup.

Add the BER plot from Add Plots and observe the results.

BER .
0.1 o - 10°

[Probability]

0.1 “IIZI"E:'

[ps]

Add the report from Add Plots and observe that the CTLE Config is 129.

Change the Rx CTLE Mode parameter to fixed and the ConfigSelect parameter value from 129 to
8 and observe how this changes the data eye.

7-39

7 Industry Standard IBIS-AMI Models

| BER | Report [

'u
y
!.’.

b
r

'ﬂsén
|‘,/' :';

i |

{Nooann Y|

)

1R IRy

;ii‘/!

|

i
iy
i
il ik
{
)

O -
i

I
!\ﬂ*
it
[Probability |

)

1
TN

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting here will avoid the
need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for CEI-56G-LR in Simulink.

Review Simulink Model Setup
The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel

and Rx blocks. All the settings from the SerDes Designer app have been transferred to the Simulink
model. Save the model and review each block setup.

7-40

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

Configuration

Stimulus

WavaOut

Waveln

Tx

WaveOut

Waneln

Rx

WaveOut

Waveln Analog Channel WavaOut

Eye Dizgram

Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. The settings for
this block are not carried over from the SerDes Designer app.

Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx analog model parameters are carried
over from the SerDes Designer app.

Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and

DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

7-41

7 Industry Standard IBIS-AMI Models

F

File Tools View Help

@- 5 0@ - a-E B -l

i
'[E
=1

E
=
m

i
fid

T=7.142-08 |

Ready

After the simulation has completed the second plot contains four views of the statistical (Init) results,
similar to what is available in the SerDes Designer App.

7-42

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4| Init Statistical Analysis Results — O *

File Edit View Inset Tools Desktop Window Help u

UDdde @ 08 K[E

Pulse Response Statistical E
0.3 P 0.1 ye ot
Un-equalized
Equalized
0.2 qua =
> 0.1 = &
=
o
0
-0.1
0 2 4 B
[s] <108 [ps]
Wanxfieform Derived from Pulse Response
i Unequalized Marme Drata
Equalized . 1 |[Eve Height U... 0.015%9
0.2 2 |Eye Height C... 0.0199
= 2 |[Eve Height L... 0.0199
— 0 | | | 4 [Eye Width U... 12.2989
5 |Eve Width C... 13.8159
05 f |Eye Width Lo... 12,2989
0 1 2 3 4
[s] <10

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in the final AMI model to Fixed.

Review Rx CTLE Block

* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

7-43

7 Industry Standard IBIS-AMI Models

7-44

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.

Generate CEI-56G-LR Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
CEI-56G-LR, then generates IBIS-AMI compliant CEI-56G-LR model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj
boxes and click OK to add these parameters to the Reserved Parameters section of the Tx AMI file.
The following ranges allow you to fine-tune the jitter values to meet CEI-56G-LR jitter mask
requirements.

Set Tx DCD Jitter Value

» Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.1

* Click OK to save the changes.

Set Tx Dj Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.1

* Click OK to save the changes.

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

Set Tx Rj Jitter Value

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.05

* Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

* Update the Tx model name to cei 56g 1r tx
* Update the Rx model name to cei 56g 1r rx

* Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 4 since there are four taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 200000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

» Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated
(IBIS file, AMI files and DLL files).

* Set the IBIS file name to be cei 56g lr serdes.ibs
* Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The CEI-56G-LR transmitter and receiver IBIS-AMI models are now complete and ready to be tested
in any industry standard AMI model simulator.

References

1 [BIS 6.1 Specification, https://ibis.org/ver6.1/ver6 1.pdf.

2 SiSoft Support Knowledge Base Article: CEI-56G-LR, https://sisoft.nal.teamsupport.com/
knowledgeBase/11501730.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About
. “Managing AMI Parameters” on page 6-2

7-45

https://ibis.org/ver6.1/ver6_1.pdf.
https://sisoft.na1.teamsupport.com/knowledgeBase/11501730
https://sisoft.na1.teamsupport.com/knowledgeBase/11501730

7 Industry Standard IBIS-AMI Models

External Websites
. https://www.sisoft.com/support/

7-46

https://www.sisoft.com/support/

USB3.1 Transmitter/Receiver IBIS-AMI Model

USB3.1 Transmitter/Receiver IBIS-AMI Model

This example shows how to create generic Universal Serial Bus version 3.1 (USB3.1) transmitter and
receiver IBIS-AMI models using the library blocks in SerDes Toolbox™. The generated models
conform to the IBIS-AMI and USB3.1 specifications.

USB3.1 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model architecture
using the datapath blocks required for USB3.1 in the SerDes Designer app. The model is then
exported to Simulink® for further customization.

This example uses the SerDes Designer model usb3 1 txrx ami. Type the following command in the
MATLAB® command window to open the model:

>> serdesDesigner('usb3 1 txrx ami')

Tx Rx
| DFE /
.—[FFE D tCharnelJ~~[[> H CTLE H COR J—~
FFE AnalogQOut Channel Analogin CTLE DFECDR

A USB3.1 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap and one
post-tap. The receiver model uses a continuous time linear equalizer (CTLE) with seven pre-defined
settings, and a 1-tap decision feedback equalizer (DFE). To support this configuration the SerDes
System is set up as follows:

Configuration Setup

* Symbol Time is set to 100 ps, since the maximum allowable USB3.1 operating frequency is 10
GHz.
* Target BER is set to 1e-12 as specified in the USB3.1 specification.

* Samples per Symbol, Modulation, and Signaling are kept at default values, which are
respectively 16, NRZ (non-return to zero), and Differential.

Transmitter Model Setup

* The Tx FFE block is set up for one pre- and one post-tap by including three tap weights, as
specified in the USB3.1 specification. This is done with the array [0 1 0], where the main tap is
specified by the largest value in the array.

* The Tx AnalogOut model is set up so that Voltage is 1.00 V, Rise time is 60 ps, R (single-ended
output resistance) is 50 Ohms, and C (capacitance) is 0.5 pF.

Channel Model Setup

e Channel loss is set to 15dB.

7-47

7 Industry Standard IBIS-AMI Models

» Differential impedance is kept at default 100 Ohms.
+ Target Frequency is set to the Nyquist frequency, 5 GHz.

Receiver Model Setup

* The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms and C
(capacitance) is 0.5 pE.

* The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix data is derived
from the transfer function given in the USB3.1 Behavioral CTLE specification.

* The Rx DFE/CDR block is set up for one DFE tap. The limits for the tap are as defined by the
USB3.1 specification: +/-50 mV.

Plot Statistical Results
Use the SerDes Designer plots to visualize the results of the USB3.1 setup.
Add the BER plot from ADD Pleots and observe the results.

BER

[Probability]

[ps]

Change the Rx CTLE Mode parameter from adapt to fixed and change the ConfigSelect
parameter value from 6 to 0 and observe how this changes the data eye.

7-48

USB3.1 Transmitter/Receiver IBIS-AMI Model

BER
10?
107"
2 —
10?3
=
m
=
5]
o
1072 —
107
10-2
0 10 20 30 40 50 60 70 80 a0
[ps]

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting the value here will
avoid the need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further customization
and generation of the AMI model executables.

USB3.1 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for USB3.1 in Simulink.

Review Simulink Model Setup
The SerDes System imported into Simulink consists of the Configuration, Stimulus, Tx, Analog

Channel and Rx blocks. All the settings from the SerDes Designer app have been transferred to the
Simulink model. Save the model and review each block setup.

7-49

7 Industry Standard IBIS-AMI Models

Configuration

==

Stimulus WavaOut o iavein Tx WiaweOul | Wizvaln Analog Channel WawveOut o iavein Rx WiaveOut gl —

7-50

Eye Diagram

* Double click the Configuration block to open the Block Parameters dialog box. The parameter
values for Symbol time, Samples per symbol, Target BER, Modulation and Signaling are
carried over from the SerDes Designer app.

* Double click the Stimulus block to open the Block Parameters dialog box. You can set the PRBS
(pseudorandom binary sequence) order and the number of symbols to simulate. This block is not
carried over from the SerDes Designer app.

* Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE block
carried over from the SerDes Designer app. An Init block is also introduced to model the
statistical portion of the AMI model.

* Double click the Analog Channel block to open the Block Parameters dialog box. The parameter
values for Target frequency, Loss, Impedance and Tx/Rx Analog Model parameters are
carried over from the SerDes Designer app.

* Double click on the Rx block to look inside the Rx subsystem. The subsystem has the CTLE and
DFECDR blocks carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

Run the Model
Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is updated as the
model is running.

USB3.1 Transmitter/Receiver IBIS-AMI Model

4. Eye Diagram — O *

File Tools View Help u
@-a/OP@| - 4L H-|Ld- EH

After the simulation has completed the second plot contains four views of the statistical (Init) results,
similar to what is available in the SerDes Designer App.

7-51

7 Industry Standard IBIS-AMI Models

4| Init Statistical Analysis Results — O *

File Edit View Inset Tools Desktop Window Help u

Udd= @ 0B | E

Pulse Response

0.4 Un-equalized
Equalized
0.3 =
— =)
2.0.2 &
=
0.1 o
oH
0 0.5 1
[s] <107 [ps]
Wﬁefarm Derived from Pulse Response
. — Lln-c:qualize-d Mame Data
0z Equalized 1 |Eve Height (V) 0.1535
2 |Eye Width (ps) 74.8021
= 0
-0.2
-0.4
0 0.5 1 1.5
[s] x10%

Update Tx FFE Block

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Mode parameter to remove this parameter from the AMI file, effectively hard-coding
the current value of Mode in the final AMI model to Fixed.

Review Rx CTLE Block

* Inside the Rx subsystem, double click the CTLE block to open the CTLE Block Parameters dialog
box.

* Gain pole zero data is carried over from the SerDes Designer app. This data is derived from the
transfer function given in the USB3.1 Behavioral CTLE specification.

* CTLE Mode is set to Adapt, which means an optimization algorithm built into the CTLE system
object selects the optimal CTLE configuration at run time.

7-52

USB3.1 Transmitter/Receiver IBIS-AMI Model

Update Rx DFECDR Block
* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box.

* Expand the IBIS-AMI parameters to show the list of parameters to be included in the IBIS-AMI
model.

* Deselect the Phase offset and Reference offset parameters to remove these parameters from
the AMI file, effectively hard-coding these parameters to their current values.

Generate USB3.1 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI parameters for
USB3.1, then generates IBIS-AMI compliant USB3.1 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes IBIS-AMI
Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog box, the analog model
values are converted to standard IBIS parameters that can be used by any industry standard
simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-AMI manager dialog box, the reserved
parameters are listed first followed by the model specific parameters following the format of a typical
AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Reserved Parameters...
button to bring up the Tx Add/Remove Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and
click OK to add these parameters to the Reserved Parameters section of the Tx AMI file. The
following ranges allow you to fine-tune the jitter values to meet USB3.1 jitter mask requirements.

Set Tx Dj Jitter Value

» Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.17

* Click OK to save the changes.

Set Tx Rj Jitter Value

* Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter dialog.
* Set the Current Value to 0.0.

* Change the Type to UI.

* Change the Format to Range.

* Set the Typ value to 0.

* Set the Min value to 0.

* Set the Max value to 0.012

* Click OK to save the changes.

7-53

7 Industry Standard IBIS-AMI Models

7-54

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model, in the AMI-Rx tab click the Reserved Parameters...
button to bring up the Rx Add/Remove Jitter&Noise dialog, select the Rx_Receiver_Sensitivity,
Rx_Dj and Rx_Rj boxes and click OK to add these parameters to the Reserved Parameters section of
the Rx AMI file. The following ranges allow you to fine-tune the jitter values to meet USB3.1 jitter
mask requirements.

Set Rx Receiver_Sensitivity Value

Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit AMI

Parameter dialog.

Set the Current Value to 0.025
Change the Format to Range.
Set the Typ value to 0.025

Set the Min value to 0.015

Set the Max value to 0.100
Click OK to save the changes.

Set Rx Dj Jitter Value

Select Rx_Dj, then click the Edit
Set the Current Value to 0. 0.
Change the Type to UI.

Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0.3

Click OK to save the changes.

Set Rx Rj Jitter Value

Select Rx_Rj, then click the Edit
Set the Current Value to 0. 0.
Change the Type to UI.

Change the Format to Range.
Set the Typ value to 0.

Set the Min value to 0.

Set the Max value to 0.015
Click OK to save the changes.

Export Models

... button to bring up the Add/Edit AMI Parameter dialog.

... button to bring up the Add/Edit AMI Parameter dialog.

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

Update the Tx model name to u
Update the Rx model name to u

sb3 1 tx
sb3 1 rx

USB3.1 Transmitter/Receiver IBIS-AMI Model

Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max analog
model corner values by +/-10%.

Verify that Dual model is selected for both the Tx and the Rx. This will create model executables
that support both statistical (Init) and time domain (GetWave) analysis.

Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

Set the Rx model Bits to ignore value to 20000 to allow sufficient time for the Rx DFE taps to
settle during time domain simulations.

Verify that Both Tx and Rx are set to Export and that all files have been selected to be generated
(IBIS file, AMI files and DLL files).

Set the IBIS file name to be usb3 1 serdes.ibs
Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The USB3.1 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in
any industry standard AMI model simulator.

References

USB, https://www.usb.org.
IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6 1.pdf.

SiSoft Support Knowledge Base Article: USB-3.1, https://sisoft.nal.teamsupport.com/
knowledgeBase/8977326.

See Also
CTLE | DFECDR | FFE | SerDes Designer

More About

“Managing AMI Parameters” on page 6-2

External Websites

https://www.sisoft.com/support/

7-35

https://www.usb.org/
https://ibis.org/ver6.1/ver6_1.pdf.
https://sisoft.na1.teamsupport.com/knowledgeBase/8977326
https://sisoft.na1.teamsupport.com/knowledgeBase/8977326
https://www.sisoft.com/support/

7

Industry Standard IBIS-AMI Models

Design DDR5 IBIS-AMI Models to Support Back-Channel Link
Training

This example shows how to create transmitter and receiver AMI models that support link training
communication (back-channel) as defined in the IBIS 7.0 specification by adding to the library blocks
in SerDes Toolbox™. This example uses a DDR5 write transfer (Controller to SDRAM) to demonstrate
the setup.

DDR5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example starts with the DDR5 controller transmitter model from “DDR5
Controller Transmitter/Receiver IBIS-AMI Model” on page 7-26 and the SDRAM receiver AMI model
from “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-15. Add a few additional pass-
through blocks to support the back-channel communication and export the model to Simulink® for
further customization.

Open the model DDR5 Write txrx ami by typing the following command in the MATLAB®
command window:

>> serdesDesigner('DDR5 Write txrx ami')

Tx Rx
Pass- Pass- DFE/ Pass-
*— Through b D J“[ChEF”E'J“[D Through i CDR Through [
T=_BCI FFE AnalogOut Channel Analegin Re=_BCI_R... WGEA DFECDR Re_BCI...

7-56

For a write transaction, the transmitter (Tx) is a DDR5 controller using 3-tap feed forward
equalization (FFE), while the receiver (Rx) is using a variable gain amplifier (VGA) with 7 pre-defined
settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery. To support
this configuration the SerDes System is set up as follows:

Configuration Setup

* Symbol Time is set to 208. 3 ps, since the target operating rate is 4.8Gbps for DDR5-4800.
+ Target BER is set to 100e-18.
* Signaling is set to Single-ended.

* Samples per Symbol and Modulation are kept at default values, which are 16 and NRZ
(nonreturn to zero), respectively.

Transmitter Model Setup
* The Pass-Through block Tx BCI is a block used to support this back-channel implementation. The

operation of this block will be described later in this example.

* The Tx FFE block is set up for one pre-tap, one main-tap, and one post-tap by including three tap
weights. This is done with the array [0 1 0], where the main tap is specified by the largest value in
the array. Tap ranges will be added later in the example when the model is exported to Simulink.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

* The Tx AnalogOut model is set up so that Voltage is 1.1V, Rise time is 100 ps, R (output
resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog models used in the
final model will be generated later in this example.

Channel Model Setup

* Channel loss is set to 5 dB, which is typical of DDR channels.
* Single-ended impedance is set to 40 ohms.
* Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

* The Pass-Through block Rx BCI Read is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

* The Rx Analogln model is set up so that R (input resistance) is 40 ohms and C (capacitance) is
0.65pF. The actual analog models used in the final model will be generated later in this example.

* The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets will be
added later in this example after the model is exported to Simulink.

* The DFECDR block is set up for four DFE taps by including four Initial tap weights set to 0. The
Minimum tap value issetto [-0.2 -0.075 -0.06 -0.045] V, and the Maximum tap value
issetto [0.05 0.075 0.06 0.045] V.

* The Pass-Through block Rx BCI Write is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

Export SerDes System to Simulink

Click on the Export button to export the configuration to Simulink for further customization and
generation of the AMI model executables.

DDRS5 Tx/Rx IBIS-AMI Model Setup in Simulink

This part of the example takes the SerDes system exported by the SerDes Designer app and
customizes it as required for DDR5 back-channel operation in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx, Analog Channel
and Rx blocks. All the settings from the SerDes Designer app are transferred to the Simulink model.
Save the model and review each block setup.

* Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters dialog box.
Expand the IBIS-AMI parameters and deselect the Mode parameter, effectively hard-coding the
current value of Mode in the final AMI model to Fixed.

* Inside the Rx subsystem, double click the VGA block to open the VGA Block Parameters dialog
box. The Mode and Gain settings are carried over from the SerDes Designer app.

* Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block Parameters
dialog box. The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS
settings are carried over from the SerDes Designer app. The Adaptive gain and Adaptive step
size are set to 3e-06 and le-06, respectively, which are reasonable values based on DDR5
SDRAM expectations. Expand the IBIS-AMI parameters and deselect Phase offset and
Reference offset parameters, effectively hard-coding these parameters to their current values.

7-357

7 Industry Standard IBIS-AMI Models

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved parameters are
listed first followed by the model-specific parameters adhering to the format of a typical AMI file.

* Set the pre-emphasis tap: Edit TapWeights -1 and set Format to Range, Typ to 0, Min to -0. 2,
and Max to 0. 2.

* Set the main tap: Edit TapWeights 0 and set Format to Range, Typ to 1, Min to 0.6, and Max to
1.

* Set the post-emphasis tap: Edit TapWeights 1 and set Format to Range, Typ to 0, Min to -0.2,
and Max to 0.2.

Create new Tx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Tx tab in
the SerDes IBIS-AMI manager dialog, highlight Tx_BCI and add the following 6 new parameters:

+ FFE_Tapml: This parameter creates a Data Store that is used to pass the FFE pre tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE_Tapml, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap -1 for back-channel training. Save the changes.

+ FFE_TapO: This parameter creates a Data Store that is used to pass the FFE main tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE_Tap0®, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 0 for back-channel training. Save the changes.

+ FFE _Tapl: This parameter creates a Data Store that is used to pass the FFE post tap value
between Tx blocks during training. Click the Add Parameter... button. Set Parameter Name to
FFE Tapl, Current Value to 0, Usage to InQut, Type to Float, and Format to Value. Set the
Description as: Tx FFE Tap 1 for back-channel training. Save the changes.

* BCI_Protocol: This parameter is only used to generate a parameter named "BCI Protocol" in
the .ami file for compliance to the IBIS-AMI specification. This parameter is not used by this
model. Click the Add Parameter... button. Set Parameter Name to BCI Protocol, Current
Value to "DDRx Write", Usage to Info, Type to String, and Format to Value. Set the
Description as: This model supports the DDRx Write Example back-channel
protocol. NOTE: This model does not currently support BCI Protocol as an
input to the model. Save the changes.

* BCI_ID: This parameter is only used to generate a parameter named "BCI ID" in the .ami file for
compliance to the IBIS-AMI specification. This parameter is not used by this model. Click the Add
Parameter... button. Set Parameter Name to BCI_ID, Current Value to "bci comm", Usage
to Info, Type to String, and Format to Value. Set the Description as: This model creates
files with names beginning with 'bci comm' for back-channel communication.
NOTE: This model does not currently support BCI ID as an input to the
model. Save the changes.

» BCI_State: This parameter creates a Data Store that is used to communicate the status of back-
channel training: 1=0ff, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter... button. Set Parameter Name to BCI_State, Usage to InOut, Type to Integer,
and Format to List. Set the Description as: Back channel training status. Set the
Default to 2, List values to [1 2 3 4 5], and List_Tip values to ["Off" "Training"
"Converged" "Failed" "Error"], then setthe Current Value to "Training". Save the
changes.

7-58

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Update Receiver (Rx) AMI Parameters

On the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box, the reserved parameters are listed
first followed by the model-specific parameters adhering to the format of a typical AMI file.

Set the VGA gain: Edit Gain. Set Description as: Rx Amplifier Gain. Make sure Format is set
to List and set Default to 1. Set List valuesas [0.5 0.631 0.794 1 1.259 1.585 2] and
List Tip valuesas ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB" "4 dB" "6 dB"], then set
the Current Value to 0dB. Save the changes.

Set the first DFE tap weight: Edit TapWeights 1. Make sure Format is set to Range and set Typ
=0, Min = -0.2, and Max = 0.05. Save the changes.

Set the second DFE tap weight: Edit TapWeights 2. Make sure Format is set to Range and set
Typ = 0, Min = -0.075, and Max = 0.075. Save the changes.

Set the third DFE tap weight: Edit TapWeights 3. Make sure Format is set to Range and set Typ
=0, Min = -0.06, and Max = 0.06. Save the changes.

Set the fourth DFE tap weight: Edit TapWeights 4. Make sure Format is set to Range and set
Typ = 0, Min = -0.045, and Max = 0.045. Save the changes.

Create new Rx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the AMI-Rx tab in
the SerDes IBIS-AMI manager dialog, highlight Rx BCI_Write and add the following new parameters
(Note: Rx_BCI_Read does not require any additional parameters):

sampleVoltage: This parameter creates a Data Store that will be used to pass the CDR sample
voltage to the other Rx blocks during training. Click the Add Parameter... button. Set Parameter
Name to sampleVoltage, Current Value to 0, Usage to InOut, Type to Float, and Format to
Va'lue. Set the Description as: Sample Voltage for back-channel training. Save the
changes.

BCI_Protocol: This parameter only generates a parameter named "BCI Protocol" in the .ami file
for compliance to the IBIS-AMI specification. This parameter is not be used by this model. Click
the Add Parameter... button. Set Parameter Name to BCI Protocol, Current Value to
"DDRx_Write", Usage to Info, Type to String, and Format to Value. Set the Description as:
This model supports the DDRx Write Example back-channel protocol. NOTE:
This model does not currently support BCI Protocol as an input to the
model. Save the changes.

BCI_ID: This parameter only generates a parameter named "BCI _ID" in the .ami file for
compliance to the IBIS-AMI specification. This parameter is not be used by this model. Click the
Add Parameter... button. Set Parameter Name to BCI_ID, Current Value to "bci comm",
Usage to Info, Type to String, and Format to Value. Set the Description as: This model
creates files with names beginning with 'bci comm' for back-channel
communication. NOTE: This model does not currently support BCI ID as an
input to the model. Save the changes.

BCI_State: This parameter creates a Data Store that is used to communicate the status of back-
channel training: 1=0ff, 2=Training, 3=Converged, 4=Failed, 5=Error. Click the Add
Parameter... button. Set Parameter Name to BCI_State, Usage to InOut, Type to Integer,
and Format to List. Set the Description as: Back channel training status. Set the
Default to 2, List values to [1 2 3 4 5], and List_Tip values to ["Off" "Training"
"Converged" "Failed" "Error"], then setthe Current Value to "Training". Save the
changes.

7-59

7 Industry Standard IBIS-AMI Models

* BCI_Message_Interval _UI: This parameter only generates a parameter named
"BCI Message Interval UI" in the .ami file for compliance to the IBIS-AMI specification. This
parameter is not be used by this model. Click the Add Parameter... button. Set Parameter
Name to BCI Message Interval UI, Current Value to 64, Usage to Info, Type to Integer,
and Format to Value. Set the Description as: BCI requires 1024 Samples Per Bit for
proper operation. Save the changes.

* BCI_Training_UI: This parameter only generates a parameter named "BCI Training UI" in
the .ami file for compliance to the IBIS-AMI specification. This parameter is not be used by this
model. Click the Add Parameter... button. Set Parameter Name to BCI_Training UI,
Current Value to 100000, Usage to Info, Type to Integer, and Format to Value. Set the
Description as: BCI training may require 100,000 UI to complete. Save the changes.

Run Refresh Init

To propagate the new AMI parameters, run Refresh Init on both the Tx and Rx blocks.

* Double click the Init subsystem inside the Tx block and click the Refresh Init button.
* Double click the Init subsystem inside the Rx block and click the Refresh Init button.

Run the Model

Run the model to simulate the SerDes system and verify that the current setup compiles and runs
with no errors or warnings. Two plots are generated. The first is a live time-domain (GetWave) eye
diagram that is updated as the model is running. The second plot contains four views of the statistical
(Init) results, like the plots available in the SerDes Designer App.

Supplied files

Three sets of external files are required to support back-channel training. The generation of these
files is beyond the scope of this example, so they are included in this example. Download these files to
the model directory (location of the Simulink .slx file) before running the complete SerDes system or
generating AMI model executables.

Write to back-channel communication files

These three files are used to write the current state of the back-channel training parameters and eye
metric(s) to an external file for communication between the Tx and Rx AMI models.

* MATLAB function file: writeBClIfile.m
* C++ files required for codegen: writeamidata.cpp and writeamidata.h

Read from back-channel communication files

These three files are used to read the current state of the back-channel training parameters and eye
metric(s) from an external file for communication between the Tx and Rx AMI models.

* MATLAB function file: readBClIfile.m
* C++ files required for codegen: readamidata.cpp and readamidata.h

Write to back-channel log files

These three files are used to write current state of the back-channel training parameters and eye
metric(s) after each training step to a log file for debug.

7-60

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

* MATLAB function file: writeBCIhistory.m
* C++ files required for codegen: writebcihist.cpp and writebcihist.h

Modify Tx FFE to enable external control of Tap values

To control the Tx FFE tap weights from the Tx BCI block when back-channel training is enabled,
replace the FFEParameter. TapWeights Constant block with a DataStoreRead block. This datastore
allows the FFE tap values to change during the simulation and to be passed in and out of each of the
datapath blocks.

Inside the Tx subsystem, click on the FFE block and type Ctrl-U to look under the mask of the FFE
block.

Delete the FFETapWeights Constant block.
Add a DataStoreRead block labeled BCIFFETapWeightsIn.

Double-click on the DataStoreRead block and set the Data store name to: Tx_BCISignal.

On the Element Selection tab, expand the signal Tx BCISignal and highlight FFE_Tapm1,
FFE Tap0® and FFE Tapl.

Press the Select>> button to select these 3 elements.

A W N

6 Save the changes.

Add a Mux block and set the number of inputs to 3 to multiplex these three parameters into a vector
for the FFE block.

Connect the output of the Mux block to the TapWeights input on the FFE.
The final FFE block should look like the following:

ki D1
FFEParameter.Mode ’—» Mode FFE Out —

k4

r

D1
Tx BCISignal.FFE Tap1

h J

01
Tx_BClSignal.FFE_Tapm1 D1 4D 3brTa;:.'u"-p'eighta
Tx_BCISignal.FFE_Tap0

FFE

BCIFFETapWeightsin

Type Ctrl-D to compile the model and check for errors.
Modify the DFECDR to output eye Sample Voltage

To determine the quality of a given set of equalization values during back-channel training, the
voltage that is sampled by the CDR at the center of the eye for each symbol will be used. This value is
captured by a DataStoreWrite block so that its value is available to the other BCI control blocks.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

7-61

7 Industry Standard IBIS-AMI Models

7-62

Open the BusSelector object

1 Highlight voltageSample from the list of Signals in the bus.
2 Hit Select>> to move it to the list of Selected signals.
3 Save the changes.

Add a DataStoreWrite block labeled CDR sample Voltage

Double click the DataStoreWrite block and set the Data store name to: Rx_ BCI WriteSignal.

2 On the Element Assignment tab, expand the signal Rx BCI WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
Save the changes.

Connect the voltageSample output of the BusSelector to the input of the new DataStoreWrite block.
This portion of the DFECDR block should look like the following:

Interior Frmrmrrrs =l bl » PAM4 UpperThreshold
<FAMAThreshold= -

JvoltageSample> PAM4_UpperThreshold

. In
U f——® PAM4_CenterThreshold

PAM4 CenterThreshold

01
— -1 FAM4 | owerThreshold
PAM4 LowerThreshold
— Rx_BC|_WriteSignal.sampleVoltage

CDR sample Voltage

Type Ctrl-D to compile the model and check for errors.
Modify the DFECDR to override Mode when training is enabled

During back-channel training, both the FFE and DFE Modes need to be set to "Fixed". The FFE Mode
has been hard-coded to "Fixed". A simple MATLAB function is used to allow you to set the DFE Mode
when training is not enabled.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the mask of the
Rx DFECDR block.

Delete the connection between the DFECDRMode block and the DFECDR.

Add a new MATLAB function block and set the label to DFEModeSelect. This function block reads
the values of BCI State and DFE.Mode and forces the DFE Mode to 1 (Fixed) when training is

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

enabled or completed. Copy/Paste the following code into the DFEModeSelect MATLAB function
block, replacing the default contents.

function Mode = DFEModeSelect(DFEModeIn, BCI State In)

if BCI_State In == % Training is Off

Mode = DFEModeln;
else

Mode = 1; % Force DFE Mode to Fixed for all other Training states
end

Add a DataStoreRead block labeled Rx BCI Write BCI State In, so the value of BCI State can
be fed into the MATLAB function block.

1 Double click the DataStoreRead block and set the Data store name to: Rx BCI WriteSignal.
2 On the Element Selection tab, expand the signal Rx BCI WriteSignal and highlight BCI_State.
3 Press the Select>> button to select this element.

4 Save the changes.

Wire up these new blocks as shown. The final DFECDR block should look like the following:

|
Mode Tag\Weights.

= ———————————u ¥
Rx_BCI WirteSigral BC1_ Stae I

waights1

Rx_BC:

Wirim_B.CI_Sate_In

— o —_——————
r Tapifisights DFECDR Phase —D| DFECDRSnal Phase
wd ——

CFECDRPhase

. o1
#{ Reference(disel Clih M clockius

Pihid_ UipperThreshald

- o
#{ PhasaOffset 'llw:"l::r-|

=LA EY o P—
DOFECDR M4_UpperThreshald

P4 _CenterThreshakd

PAMA_CenterThesnold

P4 _LiraarThreshald

FAME_LowerThreshakd

h{ Rox_BCI_Wiribe:

amplevVoltage
COR sample Voltage

Type Ctrl-D to compile the model and check for errors.
Set up the Tx Init Custom Code

The Tx Initialize function is used to set up the Tx AMI model for running back-channel training during
GetWave analysis. This creates the back-channel communication and log files, sets up the various
parameters and overrides any user defined FFE tap values.

Inside the Tx subsystem, type Ctrl-U to look under the mask for the Init block, then double click on
the initialize block to open the Initialize Function.

7-63

7 Industry Standard IBIS-AMI Models

7-64

Double click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the
SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section is not over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

Tx _BCIBCI State = Tx BCIParameter.BCI State;
Tx _BCIParameter.FFE_TapO;
Tx BCIParameter.FFE Tapl;
Tx BCIFFE Tapml = Tx BCIParameter.FFE Tapml;

Tx_BCIFFE_Tap0
Tx_BCIFFE Tapl

[
i)
[

°

X CC o

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to initialize the back-channel parameters, write the first entry in the
back-channel communication file "BCI_comm.csv" and create the back-channel log file

"BCI comm log.csv". To add the custom back-channel control code, scroll down to the custom user
code area and Copy/Paste the following code:

Tx BCIBCI State = Tx BCIParameter.BCI State; % User added AMI parameter from SerDes IBIS-AMI Man:
User added AMI parameter from SerDes IBIS-AMI Manag
User added AMI parameter from SerDes IBIS-AMI Manag

% User added AMI parameter from SerDes IBIS-AMI Man:

Tx_BCIFFE_Tap0
Tx_BCIFFE Tapl

%% Set up for GetWave back-channel
if Tx BCIBCI State == 2 @ Tra1n1ng
bciWrFile = 'BCIicomm csv'
Protocol = ['DDR5' 0];
State = ['Training' 0];
Sequence = 1;

EyeHeight = 0.0;

o o° o of of
0° 0% o° o° o°

Tx BCIParameter.FFE _Tap0;
x;BCIParameter FFE Tapl;
Tx BCIFFE Tapml = Tx BCIParameter.FFE Tapml;

[
i)
[

i)

operation

enabled

Tx/Rx back-channel communication file

Null terminate string to keep fprintf happy in C++
Null terminate string to keep fprintf happy in C++
Initialize sequence counter

Initialize training metric

User added AMI parameter from SerDes IBIS-AMI Man:
ser added AMI parameter from SerDes IBIS-AMI Manag
ser added AMI parameter from SerDes IBIS-AMI Manag
User added AMI parameter from SerDes IBIS-AMI Man:

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

end

% Publish Tx capabilities

numFFEtaps = 3;

FFEtaps = [0.0, 1.0, 0.0];

FFEInit.TapWeights = [0.0, 1.0, 0.0];

% Initialize Rx capabilities (actual values set by Rx)
numDFEtaps = 1;

DFEtaps = 0.0000;

% Create new file for back-channel communication
writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, S

% Create new BCI ID log.csv file (for back-channel history)
logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Tx', 'Init', @, Tx BCIBCI State, numDFEtaps, numFFEtaps, DFEtaj

To test that the new user code is working correctly, run the model, verify that the new back-channel
communication (BCI comm.csv) and log (BCI comm log.csv) files have been created and that the
values in the files match the values set above.

Set up the Rx Init Custom Code

The Rx Initialize function is used to set up the Rx AMI model for running back-channel training
during GetWave analysis. This reads in the back-channel communication file and then updates the file
with the Rx configuration information (number of DFE taps and DFE tap values). It also updates the
log file.

Inside the Rx subsystem type Ctrl-U to look under the mask for the Init block, then double click on
the initialize block to open the Initialize Function.

7-65

7 Industry Standard IBIS-AMI Models

7-66

Double-click on the impulseEqualization MATLAB function block to open the function in MATLAB.
This is an automatically generated function which provides the impulse response processing of the
SerDes system block (IBIS AMI-Init). The %% BEGIN: and % END: lines denote the section where
custom user code can be entered. Data in this section is not over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Rx BCI WritesampleVoltage = Rx BCI WriteParameter.sampleVoltage; % User added AMI parameter from
Rx BCI WriteBCI State = Rx BCI WriteParameter.BCI State; % User added AMI parameter from SerDes .

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to read the configuration from the Tx, initialize the additional back-
channel parameters required by the Rx, write the next entry in the back-channel communication file
"BCI_comm.csv", and append to the back-channel log file "BCI comm log.csv". To add the custom
back-channel control code, scroll down the custom user code area and Copy/Paste the following code:

Rx BCI WritesampleVoltage = Rx BCI WriteParameter.sampleVoltage; % User added AMI parameter from
Rx BCI WriteBCI State = Rx BCI WriteParameter.BCI State; % User added AMI parameter from SerDes .

%% Set up for GetWave back-channel operation
if Rx BCI WriteBCI State == 2 % Training enabled
%% Read from back-channel communication file to get setup from Tx

bciRdFile = 'BCI comm.csv';

[Protocol, ~, numFFEtaps, ~, FFEtaps, Sequence, State, EyeHeight] = readBCIfile(bciRdFile);
%% Write Rx setup to back-channel communication file.

bciWrFile = 'BCI comm.csv';

Sequence = Sequence + 1; %% Initialize sequence counter

% Publish Rx capabilities
numDFEtaps = 4;
DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, S

% Write to log file
logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Rx', 'Init', 0, Rx BCI WriteBCI State, numDFEtaps, numFFEtaps,

% Force DFE Mode to Fixed when training is enabled.
DFECDRINnit.Mode = 1;

end

To test that the new user code is working correctly, run the model, verify that the back-channel
communication (BCI comm.csv) and log (BCI comm log.csv) files have been created and that the
values in the files match the values set above.

Set up the Tx Tx_BCI pass-through block

The Tx _BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle this block will read the current eye metric supplied by the Rx, store this value,
then update the Tx and Rx parameters for the next pass. When training is complete this block will
signal completion of training, set all Tx and Rx parameters to their optimal values and then return the
models to regular operation.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

The first step is to set up the Tx BCI block for back-channel operation. The MATLAB function block
that controls the operation of the Tx BCI block is written later in this example.

Look under the mask in the Tx BCI block.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Add a Constant block labeled FFETapWeights and set the constant value to

FFEParameter.TapWeights.

* Double click the Constant block to open the mask.

* Uncheck the Interpret vector parameters as 1-D check-box to prevent the incoming Tap
Weights row vector from being converted to a column vector.

Add a DataStoreRead block labeled TxBCIStatelIn

Double click the DataStoreRead block and set the Data store name to Tx_BCISignal.
On the Element Selection tab, expand the signal Tx BCISignal and highlight BCI State.
Press the Select>> button to select this element.

A W N

Save the changes.
Add a DataStoreWrite block labeled BCIFFETapWeightsOut

Double click on the DataStoreWrite block and set the Data store name to Tx_BCISignal.

2 On the Element Assignment tab, expand the signal Tx BCISignal and highlight FFE_Tapml,
FFE Tap@ and FFE Tapl

3 Press the Select>> button to select these elements.
Save the changes.

Add a DataStoreWrite block labeled TxBCIStateOut

Double click the DataStoreWrite block and set the Data store name to: Tx_BCISignal.
On the Element Assignment tab, expand the signal Tx BCISignal and highlight BCI State.
Press the Select>> button to select this element.

A W N

Save the changes.

Add a Demux block and set the number of outputs to 3 to demultiplex the tapWeightsOut vector into
three separate signals.

Add a new MATLAB function block and set the label to Counter. This MATLAB function returns a
count of the total number of samples processed by the model and the resulting number of UI. Open
this new MATLAB function block then Copy/Paste the following code, replacing the default contents.

function [sampCount, uiCount] = counter(SymbolTime, Samplelnterval)

% Calculate Samples Per Bit
sampBit = round(SymbolTime/Samplelnterval);

% Set up persistant variables

persistent x y
if isempty(x)

7-67

7 Industry Standard IBIS-AMI Models

7-68

x = int32(1);

y = int32(1);
else

X =X+ 1;

end

% Start counting by UI

if mod(x,sampBit) == 0
y=y+1;

end

% Output results
sampCount X;
uiCount y;

The values for two of the inputs to this function, SymbolTime and SamplelInterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function.

Open the Model Explorer and navigate to Tx->Tx BCI->Counter.

Highlight the parameter SymbolTime.

Update the Scope from Input to Parameter and click Apply.

gua A W N R

Repeat this process for SampleInterval.

The Data Type for the outputs of this function, sampCount and uiCount, are set to Inherit by
default. Since this function block is creating the values for these two parameters their Data Type
needs to be explicitly defined instead of determined based on heuristics. To explicitly define the Data
Types for these two parameters:

Open the Model Explorer and navigate to Tx->Tx BCI->Counter.

Highlight the parameter sampCount.

Update the Type from Inherit to int32 and click Apply.

D W N =

Repeat this process for uiCount.

Add another new MATLAB function block and set the label to txBackChannel. This MATLAB
function block is used to control the back-channel training process. The contents of this function is
covered later in this example. However, to complete the Tx BCI block connections you must display
all the correct nodes. To enable this:

1 Double click the txBackChannel MATLAB function block to open in the MATLAB editor.

2 Delete all the default contents.

3 Insert the following function signature:

function [tapWeightsOut, BCIStateOut] = txBCtraining(tapWeightsIn, BCIStateIn, sampleCounter, uif

The values for two of the inputs to this function, SymbolTime and Samplelnterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.

2 Highlight the parameter SymbolTime.

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Set the value to Parameter.
5 Repeat this process for SampleInterval.

Connect everything together as shown below:

[1}D1 1)

EParameter TapWeiahts apWeightsin D :
EParameter. TapWeigh I—HN ht 131 01 | [o1 | *_BCISignal FFE_Tapm1
FFETapWeights tapWeightsOut o p Tx_BCISignal.FFE_Tap0
D1] | St i
Tx_BCISignal BCI State | —————{BCIStateln T BCISignal FRE_Tapt
BCIFFETapWeightsOut
TxBClStateln
E,—h ::'ampleCcJL‘l'ﬁ?>raimng
sampCount D1
‘ BCIStateOut B Tx_BCISignal.BC|_State
D1
counter uiCount P LiCounter TxBCIStateOut
Counter txBackChannel

Set up the Rx Rx_BCI_Read block

The Rx BCI Read block is used to read the Rx parameters values requested by the Tx BCI block and
set those values for the next back-channel training cycle. If the Tx BCI block signals that training is
complete, this block sets the final values to be used for the remainder of the simulation.

The first step is to set up the Rx_BCI Read block for back-channel operation. The MATLAB function
block that controls the operation of the Rx BCI Read block is written later in the example.

Look under the mask in the Rx BCI Read block.

Delete the Pass-Through system object since it will not be used. Be sure to connect the Inport to the
Outport.

Add a DataStoreRead block labeled DFECDRTapWeightsIn

Double click the DataStoreRead block and set the Data store name to: DFECDRSignal.

2 On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreRead block labeled RxBCIStateIn

Double click the DataStoreRead block and set the Data store name to: Rx_BCI_WriteSignal.
On the Element Selection tab, expand the signal Rx BCI WriteSignal and highlight BCI State.
Press the Select>> button to select this element.

A W N R

Save the changes.

7-69

7 Industry Standard IBIS-AMI Models

Add a DataStoreWrite block labeled RxBCIStateOut

Double click the DataStoreWrite block and set the Data store name to: Rx BCI WriteSignal.

2 On the Flement Assignment tab, expand the signal Rx BCI WriteSignal and highlight
BCI State.

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreWrite block labeled DFECDRTapWeightsOQut

Double-click on the DataStoreWrite block and set the Data store name to: DFECDRSignal.

2 On the Element Assignment tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Copy the Counter MATLAB function block from the Tx Tx BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelRead. This MATLAB
function block is used to control the back-channel training process. The contents of this function is
covered later in this example. However, to complete the Rx BCI Read block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelRead MATLAB function block to open in the MATLAB editor.

2 Delete all the default contents.

3 Insert the following function signature:
function [BCIStateOQut, tapWeightsOut] = rxBCtrainingRead(tapWeightsIn, BCIStateIn, sampleCounter

The values for two of the inputs to this function, SymbolTime and Samplelnterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function block.

Highlight the parameter SymbolTime.

Right-click on the parameter and select Data Scope for "SymbolTime".

Set the value to Parameter.

g A W N R

Repeat this process for SampleInterval.

Connect everything together as shown below:

7-70

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

o "\ o)
L a
— [1z4] D1 .
DFECDRSignal. TapWeights(:.:)] tapWesghtsin
[1x4] -
DFECDORTapWeightsin BEIStateOut f— Rx_BCI_WriteSignal BCI_State
o1
Rx_BCI_WriteSignal BCI_State | ECIStatalr RxBCIStateOut

RxBClStateln
reBCirainingRead

—l—. sampleCounear
a3 .
oy 1x4] D1
sampCount tapWelghtsOut L1x4) T DFECDRSignal TapWeights(:.:)
F "
o

counter uiCount uiCounbsr DFECDRTapWeightsOut

Counter

r«BackChannelRead

Set up the Rx Rx_BCI_Write block

The Rx BCI Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx BCI block for analysis.

The first step is to set up the Rx_BCI Write block for back-channel operation. The MATLAB function
block that controls the operation of the Rx BCI Write block is written later in the example.

Look under the mask in the Rx BCI Write block.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport to the
Outport.

Add a DataStoreRead block labeled CDRSampleVoltagelIn.

1 Double click the DataStoreRead block and set the Data store name to: Rx_ BCI WriteSignal.

2 On the Element Selection tab, expand the signal Rx BCI WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreRead block labeled DFECDRTapWeightsIn.

Double-click on the DataStoreRead block and set the Data store name to DFECDRSignal.

2 On the Element Selection tab, expand the signal DFECDRSignal and highlight TapWeights
[1,4].

3 Press the Select>> button to select this element.
Save the changes.

Add a DataStoreRead block labeled RxBCIStatelIn

Double click the DataStoreRead block and set the Data store name to: Rx_BCI WriteSignal
On the Element Selection tab, expand the signal Rx BCI WriteSignal and highlight BCI State
Press the Select>> button to select this element

Press OK to close the DataStoreRead dialog.

D W N =

7-71

7 Industry Standard IBIS-AMI Models

Add a DataStoreWrite block labeled RxBCIStateOut

Double click the DataStoreWrite block and set the Data store name to: Rx BCI WriteSignal.

2 On the Flement Assignment tab, expand the signal Rx BCI WriteSignal and highlight
BCI State.

3 Press the Select>> button to select this element.
Save the changes.

Copy the Counter MATLAB function block from the Tx Tx BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelWrite. This MATLAB
function block is used to control the back-channel training process. The contents of this function is
covered later in this example. However, to complete the Rx BCI Write block connections you must
display all the correct nodes. To enable this:

1 Double click the rxBackChannelWrite MATLAB function block to open in the MATLAB editor.

2 Delete all the default contents.

3 Insert the following function signature:
function BCIStateOut = rxBCtrainingWrite(sampleV, tapWeightsIn, BCIStatelIn, sampleCounter, uiCoul

The values for two of the inputs to this function, SymbolTime and Samplelnterval, are inherited
from the Model Workspace and therefore do not need to show up as nodes on the MATLAB function
block. To remove these nodes from the MATLAB function block:

Save the MATLAB function block.

Highlight the parameter SymbolTime.

Right click on the parameter and select Data Scope for "SymbolTime".

Set the value to Parameter.

gua A W N =

Repeat this process for SampleInterval.

Connect everything together as shown below:

7-72

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

D g &D
o
Fx_BCI_WrileSignal sarmpleVollage samglel
CDORSamplevolage
5 & i 4 x4 01 "
DFECDRSignal TapWeights(:,.) Tt tapiVeightsin
DFECDRTapWeighlzin
(i) [E})
Fx_BCI_WrilaSignal BCI_State f BCIStatain ‘. BCiStateOw | Ry_BC|_WriteSignal BCI_State
rxBCIrainingWrile

RxBCIS1aleln RxBCISaleCul

] sampbeCounter

(1]

samp Count

"I' o

counter yiCount) ui Counter

Counter

rBackChannelrile

Edit the txBCtraining MATLAB function block

The Tx BCI block is used to control the entire back-channel training process. The first time through it
initializes all the Tx and Rx parameters that will be optimized during training. After every back-
channel training cycle, this block reads the current eye metric supplied by the Rx, stores this value,
then updates the Tx and Rx parameters for the next pass. When training is complete this block
signals completion of training, sets all Tx and Rx parameters to their optimal values and then returns
the models to regular operation.

The Tx_BCI block was set up for back-channel operation earlier in this example. Now create the
MATLAB function block at the heart of the Tx BCI block. This MATLAB function block, which was
labeled txBackChannel, controls the entire back-channel training process. The steps involved in this
process are as follows:

1 Define the function signature
Initialize parameters and set persistent variables
Define the parameters to be swept and their ranges

On the first GetWave call, set up the initial starting parameter values for the Tx and the Rx

Every back-channel training cycle read the eye metrics calculated by the Rx and decide what to
do next. When training is complete signal the completion of training, output the optimal Tx and
Rx parameter values to be used during simulation and write these final values to the log file.

gua A W N

6 Set to proper training state and output the FFE parameters to be used

The following sections walks you through the code used in the txBackChannel MATLAB function
block. In the Tx block, click on the Tx BCI pass-through block and type Ctrl-U to push into the
Tx_BCI pass-through block set up earlier. Double-click on the txBackChannel MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the txBCtraining block has 6 inputs and 2 outputs. The inputs are:

7-73

7 Industry Standard IBIS-AMI Models

7-74

+ tapWeightsIn: The FFE tap weights array as defined in the FFE mask.

* BCIStateIn: The back-channel state value from the TxBCIStateIn Data Store.
* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of Ul

* SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter”.

There are two outputs:

+ tapWeightsOut: The FFE tap weights array output to the BCIFFETapWeightsOut Data Store.
* BCIStateOut: The back-channel state value output to the TxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block and so is
already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:
* sampBit: The number of samples in each UL

* messagelnterval: The length (in UI) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

* BClwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 11 persistent variables used by this
function. Persistent variables retain their values between each call to this MATLAB function. The 11
persistent variables are:

* Protocol: The protocol being used by this back-channel model.

* numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.
 numFFEtaps: The number FFE taps being included in this back-channel training algorithm.

» DFEtaps: The current DFE tap values.

» FFEtaps: The current FFE tap values.

* Sequence: A integer counter used to log the sequence of training events.

* State: The current back-channel training state.

* EyeHeight: The current eye height (in Volts) being reported by the Rx.

» step: The current training sequence step being run.

* indx: An index variable for control loops.

* metric: An array used to store the incoming eye heights from each training step.

To initialize these parameters and variables, Copy/Paste the following code into the txBackChannel
MATLAB function block:

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

%% Setup

sampBit = round(SymbolTime/SampleInterval); %
messagelnterval = 256; %
BCIwait = 512; %

Calculate Samples Per Bit
Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI

o® o° o°

% Read BCI file to determine training values
Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State EyeHeight step indx met

[)
“
[)

“©

% Initialize variable initial conditions

if isempty(Protocol)
Protocol = 'Defaults’;

end

if isempty(numDFEtaps)
numDFEtaps = 4;

end

if isempty(numFFEtaps)
numFFEtaps = 3;

end

if isempty(DFEtaps)
DFEtaps = [0.000,0.000,0.000,0.000];

end

if isempty(FFEtaps)
FFEtaps = [0.000,1.000,0.000];

end

if isempty(Sequence)
Sequence = 1;

end

if isempty(State)
State = 'Testing';

end

if isempty(EyeHeight)
EyeHeight = 0.000;

end

if isempty(step)
step = 1;

end

if isempty(indx)
indx = 1;

end

if isempty(metric)
metric = zeros(50,1);

end

Define swept parameters

The training algorithm implemented in this example sweeps the pre and post FFE tap values and all 4
of the DFE taps individually, then selects the optimal value for each tap. Eight parameters are used to
define the ranges for each of the taps and the step size to be used during training:

+ ffeTapStep: The step size to be used when sweeping the FFE taps. This value is negative since
the FFE tap values are always <= 0.

+ dfeTapStep: The step size to be used when sweeping the DFE taps.

* regFFEtapml: The min/max range of values to be used when sweeping the FFE pre-tap.

* regFFEtapl: The min/max range of values to be used when sweeping the FFE post-tap.

7-75

7 Industry Standard IBIS-AMI Models

7-76

+ regDFEtapl: The min/max range of values to be used when sweeping the first DFE tap.

* regDFEtap2: The min/max range of values to be used when sweeping the second DFE tap.
* regDFEtap3: The min/max range of values to be used when sweeping the third DFE tap.

* regDFEtap4: The min/max range of values to be used when sweeping the fourth DFE tap.

To define all the parameters to be swept during training, Copy/Paste the following code into the
txBackChannel MATLAB function block:

% Define parameter step sizes
ffeTapStep = -0.050;
dfeTapStep = 0.010;

% Map ranges to register values

regFFEtapml = (0.000:ffeTapStep:-0.300);
regFFEtapl = (0.000:ffeTapStep:-0.300);
regDFEtapl = (-0.200:dfeTapStep: 0.050);
regDFEtap2 = (-0.075:dfeTapStep: 0.075);
regDFEtap3 = (-0.060:dfeTapStep: 0.060);
regDFEtap4 = (-0.045:dfeTapStep: 0.045);

First GetWave call

When training is enabled, the very first call to this MATLAB function needs to read the back-channel
communication file written during Init to determine the full capabilities of the Tx and Rx models. This
section also sets up the initial values to be used for the first back-channel training cycle. Finally, all
these values are written to the back-channel communication log file.

To implement the first GetWave call, Copy/Paste the following code into the txBackChannel MATLAB
function block:

%% First Tx GetWave Call (Sequence=3)

if sampleCounter == 1 && BCIStateln == 2 % Training enabled
% Read back-channel communication file to get current settings
bciRdFile = 'BCI_comm.csv';
[~, numDFEtaps, numFFEtaps, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

% Decide what to do first

% Tx Params

FFEtaps = [0.000,1.000,0.000];

% Rx Params

DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

% Write back-channel communication file with first pass settings for Rx
bciWrFile = 'BCI_comm.csv';
Protocol = ['DDR5' 01]; % Null terminate string to keep fprintf happy in C++
State = ['Training' 0]; % Null terminate string to keep fprintf happy in C++

Sequence = Sequence + 1;

writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Seq

[
5
[

5

% Write to log file

logFileName = 'BCI comm log.csv';

writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(|
end

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Back-channel training algorithm

When training is enabled, after waiting the number of UI as defined by the constant BCIwait, the
back-channel training algorithm is called every training block as defined by the messageInterval
constant. First the current metrics reported by the Rx are read, then those results are written to the
back-channel communication log file. The training algorithm uses the following steps:

1 Sweep all values of the FFE pre-tap and determine which value results in the largest eye
opening.

2 Sweep all values of the FFE post-tap and determine which value results in the largest eye
opening.

Sweep all values of DFE tap 1 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 2 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 3 and determine which value results in the largest eye opening.
Sweep all values of DFE tap 4 and determine which value results in the largest eye opening.

N o g~ W

When training is complete, change the State to "Converged" and write the final values to the
back-channel communication log file.

To implement the back-channel training algorithm, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Each subsequent BCI Block (Sequence=5,7,9,11...)

if uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messagelnterval * sampBit)) == 0 && BCISt
% Read setup used for previous 16 GetWaveblocks from back-channel communication file
bciRdFile = 'BCI comm.csv';
[~, ~, ~, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

% Write current results to log file
Sequence = Sequence + 1;

logFileName = 'BCI comm log.csv';
writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(l
if indx ~= 1

% Store current metrics
metric(indx - 1) = EyeHeight;
end

% Decide what to do next
switch step
case 1 % Step 1: Determine best value for FFE tap -1
State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
if indx <= length(regFFEtapml)
% Set values for next iteration

FFEtaps(1l) = regFFEtapml(indx);
FFEtaps(3) = 0.0;
FFEtaps(2) = 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

indx = indx + 1;

elseif indx == length(regFFEtapml) + 1
% Set best metric
[~, jj] = max(metric);

FFEtaps(1l) = regFFEtapml(jj);
FFEtaps(3) = 0.0;
FFEtaps(2) = 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

% Done. Set up for next step

7-77

7 Industry Standard IBIS-AMI Models

metric = zeros(50,1);
step = step + 1;
indx = 1;

end
case 2 % Step 2: Determine best value for FFE tap 1

State = ['Training' 0];

if indx <= length(regFFEtapl)
% Set values for next iteration
%FFEtaps(l) = 0.0; %% Use value from step 1
FFEtaps(3) regFFEtapl(indx);
FFEtaps(2) 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));
indx = indx + 1;

elseif indx == length(regFFEtapl) + 1
% Set best metric
[~, jj] = max(metric);
FFEtaps(3) = regFFEtapl(jj);
FFEtaps(2) = 1 - abs(FFEtaps(1l)) - abs(FFEtaps(3));

% Done. Set up for next step
metric = zeros(50,1);

step step + 1;

indx 1;

end
case 3 % Step 3: Determine best value for DFE tap 1

State = ['Training' 0];

if indx <= length(regDFEtapl)
% Set values for next iteration
DFEtaps = [regDFEtapl(indx), 0.0000, 0.0000, 0.0000];
indx = indx + 1;

elseif indx == length(regDFEtapl) + 1
% Set best metric
[~, jil max(metric);
DFEtaps [regDFEtapl(jj), 0.0000, 0.0000, 0.0000];

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;
end
case 4 % Step 4: Determine best value for DFE tap 2
State = ['Training' 0];
if indx <= length(regDFEtap2)
% Set values for next iteration
DFEtaps(2:4) = [regDFEtap2(indx), 0.0000, 0.0000];
indx = indx + 1;
elseif indx == length(regDFEtap2) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(2:4) = [regDFEtap2(jj), 0.0000, 0.0000];

% Done. Set up for next step
metric = zeros(50,1);

step step + 1;

indx 1;

end

case 5 % Step 5: Determine best value for DFE tap 3
State = ['Training' 0];
if indx <= length(regDFEtap3)

7-78

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

% Set values for next iteration
DFEtaps(3:4) = [regDFEtap3(indx), 0.0000];
indx = indx + 1;

elseif indx == length(regDFEtap3) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(3:4) = [regDFEtap3(jj), 0.0000];

% Done. Set up for next step
metric = zeros(50,1);

step step + 1;

indx 1;

end
case 6 % Step 6: Determine best value for DFE tap 4

State = ['Training' 0];

if indx <= length(regDFEtap4)
% Set values for next iteration
DFEtaps(4) = regDFEtap4(indx);
indx = indx + 1;

elseif indx == length(regDFEtap4) + 1
% Set best metric
[~, jj] = max(metric);
DFEtaps(4) = regDFEtap4(jj);

% Done. Set up for next step
metric = zeros(50,1);
step = step + 1;
indx = 1;
end
case 7 % Step 7: Training is complete
State = ['Converged' 0];
% Write final entry in log file
logFileName = 'BCI comm log.csv';
Sequence = Sequence + 1;
writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, 3, numel(DFEtaps), numel(FI
otherwise
State = ['Error' 0];
end

% Write to back-channel communication file with next pass settings for Rx
bciWrFile = 'BCI comm.csv';
Protocol = ['DDR5' 01]; %% Null terminate string to keep fprintf happy in C++

writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Seq

- 0\0 ~

end
Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function is to update the State for the
BCI State Data Store and to update the FFE tap array values.

To set the training state and output values, Copy/Paste the following code into the txBackChannel
MATLAB function block:

%% Set back-channel state
if strcmpi(State,'0Off') || strcmpi(State,['Off' 0])
BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])

7-79

7 Industry Standard IBIS-AMI Models

BCIStateQut = 2;

elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])
BCIStateOut = 3;

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 01])
BCIStateQut = 4;

else %Error
BCIStateOut = 5;

end

%% Set output FFE values based on Training

if BCIStateOut == 2 || BCIStateOut == 3 % Training enabled/Converged
tapWeightsOut = FFEtaps(1,1:3);

else % Training Off/Failed/Error
tapWeightsOut = tapWeightsIn;

end

Save and close this MATLAB function block.

Edit the rxBCtrainingRead MATLAB function block

The Rx BCI Read block is used to read the Rx parameters values requested by the Tx BCI block and
set them for the next back-channel training cycle. If the Tx BCI block signals that the training is
complete, this block sets the final values to be used by the Rx for the remainder of the simulation.

The Rx BCI Read block was set up for back-channel operation earlier in this example. Now create the
MATLAB function block at the center of the Rx BCI Read block. This MATLAB function block, which
was labeled rxBCtrainingRead, sets the Rx DFE values to be used. The steps involved in this
process are as follows:

1 Define the function signature.

2 Initialize parameters and set persistent variables.

3 On the first GetWave call, and at the beginning of every back-channel training cycle, read the Rx
DFE tap values to be used as specified by the Tx back-channel training algorithm.

4 Set the proper training state and output the DFE parameters to be used.

The following sections walk you through the code used in the rxBCtrainingRead MATLAB function
block. In the Rx block, click on the Rx BCI Read pass-through block and type Ctrl-U to push into the
Rx BCI Read pass-through block set up earlier. Double click the rxBCtrainingRead MATLAB function
block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the rxBCtrainingRead block has 6 inputs and 2 outputs. The inputs are:

* tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
* BCIStatelIn: The back-channel state value from the RxBCIStateIn Data Store.

* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of Ul.

* SymbolTime: The Ul (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

7-80

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There are two outputs:

* tapWeightsOut: The DFE tap weights array output to the DFECDRTapWeightsOut Data Store.
* BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block and so is
already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-channel training
cycle:
* sampBit: The number of samples in each UI.

* messagelnterval: The length (in UI) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

* BClIwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 7 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 7 persistent
variables are:

* Protocol: The protocol being used by this back-channel model.

+ numDFEtaps: The number of DFE taps being included in this back-channel training algorithm.
 numFFEtaps: The number FFE taps being included in this back-channel training algorithm.

* DFEtaps: The current DFE tap values.

» FFEtaps: The current FFE tap values.

* Sequence: A integer counter used to log the sequence of training events.

* State: The current back-channel training state.

To initialize the parameters and variables, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

%% Setup

sampBit = round(SymbolTime/SampleInterval); %
messagelnterval = 256; %
BCIwait = 512; %

Calculate Samples Per Bit
Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI

o® o° o°

% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State;

% Initialize variable initial conditions
if isempty(Protocol)
Protocol = 'Defaults’;
end
if isempty(numDFEtaps)
numDFEtaps = 4;
end

7-81

7 Industry Standard IBIS-AMI Models

7-82

if isempty(numFFEtaps)
numFFEtaps = 3;

end

if isempty(DFEtaps)
DFEtaps = tapWeightsIn;

end

if isempty(FFEtaps)
FFEtaps = [0,0,0];

end

if isempty(Sequence)
Sequence = 1;

end
if isempty(State)
if BCIStateIn == 1 % Off
State = ['0ff' 0O];
elseif BCIStateIn == 2 % Training
State = ['Training' 0];
elseif BCIStateIn == 3 % Converged
State = ['Converged' 0];
elseif BCIStateIn == 4 % Failed
State = ['Failed' 0];
else % Error
State = ['Error' 0];
end
end

Read DFE tap values to be used

When training is enabled, on the very first call to this MATLAB function and at the beginning of every
training block as defined by the messageInterval constant, the back-channel communication file is
read to determine the updated DFE tap values to be used for the next training cycle.

To set up the DFE tap values to be used, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

% First GetWave block of each BCI Block (Sequence=3,5,7,9,11,...)
Read back-channel communication file to get current settings
if (sampleCounter == 1 && BCIStateIn == 2) || ((uiCounter > BCIwait + 2 && mod(sampleCounter -
bciRdFile = 'BCI_comm.csv';
[Protocol, numDFEtaps, numFFEtaps, DFEtaps(1l,1:4), FFEtaps, Sequence, State, ~] = readBCIfil

)
6
)

“©

end
Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function block is to update the State for the
BCI State Data Store and to update the DFE tap array values.

To set the State and output values, Copy/Paste the following code into the rxBCtrainingRead MATLAB
function block:

%% Set back-channel state
if strcmpi(State,'0ff') || strcmpi(State,['0ff' 0])
BCIStateOut = 1;

elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
BCIStateOut = 2;
elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])

BCIStateOut = 3;

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 01])
BCIStateQut = 4;

else %Error
BCIStateQut = 5;

end

%% Set output DFE values based on Training

if BCIStateQut == 2 % Training enabled
tapWeightsOut = DFEtaps(1,1:4);

else
tapWeightsOut

end

tapWeightsIn;

Save and close this MATLAB function block.

Edit the rxBCtrainingWrite MATLAB function block

The Rx BCI Write block is used at the end of each back-channel training cycle to calculate the
current eye metrics and report those metrics back to the Tx BCI block for analysis.

The Rx BCI Write block was set up for back-channel operation earlier in this example. Now the
MATLAB function block at the center of the Rx BCI Write block will be created. This MATLAB
function block, which we labeled rxBCtrainingWrite, will calculate the minimum eye height of the
last 127 bits and write those values to the back-channel communication file and log file. The steps
involved in this process are as follows:

1 Define the function signature.

2 Initialize parameters and set persistent variables.

3 Store a vector of voltages to be used when calculating the minimum eye height.

4

At the end of each back-channel training cycle calculate the minimum eye height and write it to
the back-channel communication file.

5 Update the training state.

The following sections will walk through the code used in the rxBCtrainingWrite MATLAB function
block. In the Rx block, click on the Rx BCI Write pass-through block and type Ctrl-U to push into the
Rx BCI Write pass-through block set up earlier. Double-click on the rxBCtrainingWrite MATLAB
function block, then Copy/Paste the code described in the following sections.

Define the function signature

The function signature for the rxBCtrainingWrite block has 7 inputs and 1 output. The inputs are:

* sampleV: The voltage at the CDR sample time.

+ tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn Data Store.
* BCIStatelIn: The back-channel state value from the RxBCIStateIn Data Store.

* sampleCounter: Count of total number of samples.

* uiCounter: Count of total number of UL

* SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace and
therefore does not need to show up as a node on the MATLAB function block. To remove this node
from the MATLAB function block, the Data Scope has been set to "Parameter".

7-83

7 Industry Standard IBIS-AMI Models

7-84

* Samplelnterval: Simulation step size (in seconds). This value is inherited from the Model
Workspace and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to "Parameter".

There is one output:
+ BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block and so is
already present.

Initialize parameters and variables

This section sets up the four constants needed for calculating the size of the back-channel training
cycle:
* sampBit: The number of samples in each Ul

* messagelnterval: The length (in Ul) of each back-channel training cycle. This value is currently
set to ~2 PRBS7 iterations.

* BClIwait: The delay time (in UI) before starting back-channel training. This value is currently set
to ~4 PRBS7 iterations.

+ windowLength: The length of the window (in UI) used to calculate the minimum eye height. This
value is currently set to 1 PRBS7 iteration.

In addition to the constant values, this section sets up the 5 persistent variables used by this function.
Persistent variables retain their values between each call to this MATLAB function. The 5 persistent
variables are:

* Protocol: The protocol being used by this back-channel model.

* Sequence: A integer counter used to log the sequence of training events.

* State: The current back-channel training state.

* EyeHeight: The calculated inner eye height value (in Volts).

* vSamp: The sample voltage being reported by the CDR block.

To initialize all parameters and variables for this block, Copy/Paste the following code into the
rxBCtrainingWrite MATLAB function block:

%% Setup

sampBit = round(SymbolTime/SamplelInterval);
messageInterval = 256;

BCIwait = 512;

windowlLength = 127;

Calculate Samples Per Bit

Length (in UI) of back-channel training cycle it
Delay time (in UI) before starting training(~4 PI
Length of window (in UI) used to calculate minimi

o° of o of
o® o° o° o°

% Make variables available between time steps
persistent Protocol Sequence State EyeHeight vSamp

if isempty(State)

if BCIStateIn == 1 % Off
State = ['Off' 0];

elseif BCIStateIn == 2 % Training
State = ['Training' 0];

elseif BCIStateIn == 3 % Converged
State = ['Converged' 0];

elseif BCIStateIn == 4 % Failed

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

State = ['Failed' 0];
else % Error
State = ['Error' 0];
end
end

Store vector of reported voltages

This section accumulates a rolling vector of voltages to be used in the minimum eye height
calculation. Assume that these voltages are symmetric around 0V, so the absolute value is used.

To store the report eye voltage values, Copy/Paste the following code into the rxBCtrainingWrite
MATLAB function block:

% Accumulate rolling vector of voltages for minimum eye height calculations
if isempty(vSamp)
vSamp = zeros(1l, windowLength * sampBit);

end
vSamp = circshift(vSamp, 1);
vSamp(1l) = abs(sampleV); % Assume symmetry and only use positive values

Calculate minimum eye height and write to file

When training is enabled, after waiting the number of UI as defined by the constant BCIwait the
back-channel metrics are calculated at the end of each training iteration as defined by the
messagelnterval constant. First the back-channel configuration is read from the back-channel
communication file, then the inner eye height value is calculated and the results output to the back-
channel communication file and the log file.

To calculate the eye metrics and write to the communication file every back-channel cycle, Copy/Paste
the following code into the rxBCtrainingWrite MATLAB function block:

%% Write current state and eye metrics at the end of each BCI block

if wuiCounter > BCIwait + 2 && mod(sampleCounter, (messagelnterval * sampBit)) == 0 && BCIStatell

% Read setup used for last 16 GetWaveblocks from back-channel communication file
bciRdFile = 'BCI _comm.csv';
[Protocol, ~, ~, ~, FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

% Calculate inner eye height from sampled voltage:
EyeHeight = min(vSamp) * 2; % 2X since using absolute value.

% Write new back-channel communication file with end of BCI-Block metrics
bciWrFile = 'BCI_comm.csv';
Sequence = Sequence + 1;

writeBCIfile(bciWrFile, 'w', Protocol, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFI

[)
“©

% Write to log file:
logFileName = 'BCI comm log.csv';

writeBCIhistory(logFileName, 'Rx', 'GetW', sampleCounter, BCIStateIn, numel(tapWeightsIn), ni

end
Set the training State

The last thing that needs to be done in this MATLAB function block is to update the State for the
BCI State Data Store.

7-85

7 Industry Standard IBIS-AMI Models

7-86

To set the training state, Copy/Paste the following code into the rxBCtrainingRead MATLAB function
block:

%% Update State Out if State In changed

if BCIStateln == % Converged
State = ['Converged' 0];
elseif BCIStateln == % Failed

State = ['Failed' 0];
end

if strcmpi(State, '0ff") || strcmpi(State,['0ff' O])
BCIStateOut = 1;

elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
BCIStateOut = 2;

elseif strcmpi(State, 'Converged') || strcmpi(State,['Converged' 0])
BCIStateOut = 3;

elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
BCIStateOut = 4;

else %Error
BCIStateOut = 5;

end

Save and close this MATLAB function block.

In Simulink, type Ctrl-D to compile the model and check for errors. Resolve any errors before
proceeding.

Run the Model and Verify results
The next step is to run the model and verify that the back-channel code is operating correctly.
Set up simulation parameters

Before running the complete model, open the Stimulus block to set the stimulus pattern used to test
the model:

* Set PRBS to 7, so that a PRBS7 pattern will be used during simulation.

* Set the Number of symbols to 50000 to allow the back-channel training algorithm sufficient
time to complete.

Test proper opereration of Tx and Rx models

Run the model. While the model is running, observe the time domain waveform changing as each of
the tap settings is swept. When the simulation is complete the back-channel communication file,
BCI comm.csv, should look similar to:

Protocol,DDR5,

numDFEtaps, 4,

numFFEtaps, 3,
DFEtaps,0.01000,-0.00500,-0.01000, -0.00500,
FFEtaps,0.00000,0.85000,-0.15000,

Sequence, 176,

State, Converged,

EyeHeight,0.612739,

Open the back-channel communication log file, BCI comm log.csv, in a spreadsheet editor. Each row
in the log file shows the Sequence number, which model wrote to the file (Tx or Rx), the current

Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

Sample Count, BCI State and calculated Eye Height. The last 7 columns in the log show the current
FFE and DFE taps values being simulated. Observe how the Eye Height changes as each value is
swept, and the parameter value that gives the largest Eye Height is set after each iteration. Note that
the value of FFEOQ is always computed from the values of FFE-1 and FFE1.

Generate DDR5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-AMI
compliant DDR5 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open SerDes
IBIS-AMI Manager button.

Export Models

On the Export tab in the SerDes IBIS/AMI manager dialog box.

* Update the Tx model name to ddr5 bc_tx.
* Update the Rx model name to ddr5 bc_ rx.

* Note that the Tx and Rx corner percentageis set to 10. This will scale the min/max analog
model corner values by +/-10%.

» Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings. This will create
model executables that support both statistical (Init) and time domain (GetWave) analysis.

* Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.

* Set the Rx model Bits to ignore value to 50000 to allow enough time for training to complete
during time domain simulations.

* Set Models to export as Both Tx and Rx so that all the files are selected to be generated (IBIS
file, AMI files and DLL files).

* Set the IBIS file name to be ddr5 bc_ txrx.ibs
» Jitter can be added if desired.

* Press the Export button to generate models in the Target directory.

Update AMI files if Desired

The Tx and Rx AMI files generated by SerDes Toolbox are compliant to the IBIS 6.1 specification, so
all back-channel specific parameters have been placed in the Model Specific section of the file. If you
wish to make the models compliant to the IBIS 7.0 specification, update the AMI Version to "7.0" and
move all the BCI * parameters into the Reserved Parameters section of the file.

The BCI_State parameter has 5 states required for complete back-channel training, however to make
these models more user-friendly the end user only needs 2 states: "Off" and "Training". To make this
change, update the BCI State parameter in each AMI file as follows:

* Change (List 123 4 5) to (List 1 2).

* Change (List_Tip "Off" "Training" "Converged" "Failed" "Error") to (List Tip "Off"
"Training").

* Note that this will not affect the operation of the model, only to the parameter values visible to the
user.

7-87

7 Industry Standard IBIS-AMI Models

7-88

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be tested in any
industry standard AMI model simulator.

Model Limitations

When simulating with these models in an industry standard AMI model simulator, keep the following
limitations in mind:

« BCI Protocol is not supported. These models have been hard-coded to a Protocol named
"DDRx Write".

* BCI ID is not supported. These models have been hard-coded to a BCI ID named "bci comm",
which means that each simulation must be run in a separate directory to avoid filename collisions
during simulation.

* These models must be run with a block size of 1024 for proper operation.

* Back-channel training must be enabled on both models for training to be enabled. This is done by
setting the BCI State parameters to "Training".

* These models will operate correctly with any UI or Samples Per Bit values.
References

1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7 0.pdf
2]JEDEC website, https://www.jedec.org/

See Also
DFECDR | FFE | PassThrough | SerDes Designer | VGA

More About

. “DDRS Controller Transmitter/Receiver IBIS-AMI Model” on page 7-26
. “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 7-15

. “Managing AMI Parameters” on page 6-2

External Websites
* https://www.sisoft.com/support/

https://ibis.org/ver7.0/ver7_0.pdf
https://www.jedec.org/
https://www.sisoft.com/support/

	Design and Simulate SerDes System Topics
	Fundamentals of SerDes Systems
	Clock and Data Recovery in SerDes System
	Phase Detector
	Recovering Clock Signal

	Analog Channel Loss in SerDes System
	Loss Model from Channel Loss Metric
	Loss Model from Impulse Response
	Introducing Cross Talk

	Manage IBIS-AMI Parameters
	Contents of IBIS File
	Contents of AMI File
	Debugging AMI Files in EDA

	Statistical Analysis in SerDes Systems
	Init Subsystem Workflow
	SerDes System Using Init Subsystem

	Customize SerDes Systems Topics
	Customize SerDes System in MATLAB

	Create and Customize IBIS-AMI Models Topics
	SiSoft Link
	SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

	Design and Simulate SerDes Systems Examples
	Find Zeros, Poles, and Gains for CTLE from Transfer Function
	Convert Scattering Parameter to Impulse Response for SerDes System
	Globally Adapt Receiver Components Using Pulse Response Metrics to Improve SerDes Performance

	Customize SerDes Systems
	Customizing SerDes Toolbox Datapath Control Signals
	Customizing Datapath Building Blocks
	Implement Custom CTLE in SerDes Toolbox PassThrough Block

	Customize IBIS-AMI Models
	Managing AMI Parameters

	Industry Standard IBIS-AMI Models
	PCIe4 Transmitter/Receiver IBIS-AMI Model
	DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model
	DDR5 Controller Transmitter/Receiver IBIS-AMI Model
	CEI-56G-LR Transmitter/Receiver IBIS-AMI Model
	USB3.1 Transmitter/Receiver IBIS-AMI Model
	Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

